推荐产品
应用
- Two-photon polymerized poly (2-ethyl-2-oxazoline) hydrogel 3D microstructures: This study presents a novel hydrogel platform based on poly(2-ethyl-2-oxazoline) that allows for the creation of 3D microstructures with tunable mechanical properties, suitable for tissue engineering applications (Czich et al., 2020).
- High definition fibrous poly (2-ethyl-2-oxazoline) scaffolds: This research explores the use of melt electrospinning writing to create high-definition scaffolds from poly(2-ethyl-2-oxazoline), highlighting its potential for creating precise and customizable structures in biomedical applications (Hochleitner et al., 2014).
- Synthesis and evaluation of methacrylated poly (2-ethyl-2-oxazoline): This study focuses on the synthesis of methacrylated poly(2-ethyl-2-oxazoline) for use as a mucoadhesive polymer, demonstrating its potential in enhancing nasal drug delivery systems (Shan et al., 2021).
- High-definition poly (2-ethyl-2-oxazoline) scaffolds: Investigates the use of melt electrospinning writing to fabricate scaffolds from poly(2-ethyl-2-oxazoline), a polymer that offers promise due to its high melting temperature and hydrophilic nature, suitable for various biomedical applications (Hochleitner et al., 2014).
储存分类代码
11 - Combustible Solids
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
商品
Poly(2-oxazoline)s, synthesized via LCROP, resemble polypeptides and have various applications in polymer chemistry.
PiPrOx-based polymers exhibit diverse stimuli-responsive properties, showcased in recent developments for functional polymer systems.
The introduction of polymers into the biomedical field has opened new avenues in tissue engineering, implant design, biosensing, and drug delivery.
Microparticles in drug delivery: Study on controlling chitosan microparticle size and distribution, exploring encapsulation of BSA and TPP cross-linker.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门