跳转至内容
Merck
CN

227129

Sigma-Aldrich

乙酰丙酮钴(II)

97%

登录查看公司和协议定价

别名:
2,4-戊二酮 钴(II) 衍生物, Co(acac)2, 乙酰丙酮合钴, 乙酰丙酮钴
线性分子式:
Co(C5H7O2)2
CAS号:
分子量:
257.15
EC 号:
MDL编号:
UNSPSC代码:
12352300
PubChem化学物质编号:
NACRES:
NA.23

质量水平

检测方案

97%

形式

powder and chunks

反应适用性

core: cobalt

杂质

≤3% water

mp

165-170 °C (lit.)

SMILES字符串

CC(=O)\C=C(\C)O[Co]O\C(C)=C/C(C)=O

InChI

1S/2C5H8O2.Co/c2*1-4(6)3-5(2)7;/h2*3,6H,1-2H3;/q;;+2/p-2/b2*4-3-;

InChI key

UTYYEGLZLFAFDI-FDGPNNRMSA-L

正在寻找类似产品? 访问 产品对比指南

应用


  • Cobalt (II)-Catalyzed Isocyanide Insertion Reaction with Amines: Details a synthetic method for forming ureas and azaheterocycles catalyzed by Cobalt(II) acetylacetonate, applicable in pharmaceutical synthesis (Zhu et al., 2014).

  • Cobalt‐Catalyzed C−H Functionalizations by Imidate Assistance: Describes a method using Cobalt(II) acetylacetonate for C-H functionalization, important for organic synthesis and material chemistry (Mei & Ackermann, 2016).

  • Cobalt (II) acetylacetonate covalently anchored onto magnetic mesoporous silica nanospheres: Focuses on its use as a catalyst for epoxidation of olefins, relevant for catalysis research (Li et al., 2015).

Cobalt(II) acetylacetonate can be used:
  • A precursor in the solvothermal synthesis of Co3O4 nanoparticles. These nanoparticles exhibit high electrochemical performance and are used as a potential supercapacitor material due to their excellent capacitance and cycling stability.
  • A precursor in the preparation of Co3O4 nanoparticles via hydrothermal method. The resulting Co3O4 nanoparticles exhibit a highly-uniform mesoporous structure and tunable sizes, making them promising for CO sensing applications.
  • A precursor for the growth of cobalt oxide thin films using Metal-Organic Chemical Vapor Deposition (MOCVD).

警示用语:

Danger

危险分类

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 1B Inhalation - Eye Dam. 1 - Repr. 1B - Resp. Sens. 1 - Skin Sens. 1

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

个人防护装备

dust mask type N95 (US), Eyeshields, Gloves


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Sujin Kim et al.
ChemSusChem, 10(17), 3473-3481 (2017-06-20)
Hybrid systems in which molecule-based active species are combined with nanoscale materials may offer valuable routes to enhance catalytic performances for electrocatalytic reactions. The development of rationally designed, cost-effective, efficient catalysts for the oxygen reduction reaction (ORR) is a crucial
Itziar Galarreta et al.
Nanomaterials (Basel, Switzerland), 8(2) (2018-01-26)
With the aim of studying the influence of synthesis parameters in structural and magnetic properties of cobalt-doped magnetite nanoparticles, Fe3-xCo
Hui Liu et al.
Scientific reports, 7(1), 11421-11421 (2017-09-14)
Alloying platinum (Pt) with suitable transition metals is effective way to enhance their catalytic performance for methanol oxidation reaction, and reduce their cost at mean time. Herein, we report our investigation on the synthesis of bimetallic platinum-cobalt (PtCo) alloy nanoparticles
Kinjal Gandha et al.
Nanotechnology, 26(7), 075601-075601 (2015-01-23)
Ferromagnetic FeCo nanocrystals with high coercivity have been synthesized using a reductive decomposition method. The sizes and shapes of the nanocrystals were found to be dependent on reaction parameters such as the surfactant ratio, the precursor concentration and the heating
Javier Muro-Cruces et al.
ACS nano, 13(7), 7716-7728 (2019-06-08)
The physicochemical properties of spinel oxide magnetic nanoparticles depend critically on both their size and shape. In particular, spinel oxide nanocrystals with cubic morphology have shown superior properties in comparison to their spherical counterparts in a variety of fields, like

商品

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门