Skip to Content
Merck
CN
  • Synthesis and characterization of image-able polyvinyl alcohol microspheres for image-guided chemoembolization.

Synthesis and characterization of image-able polyvinyl alcohol microspheres for image-guided chemoembolization.

Journal of materials science. Materials in medicine (2015-06-25)
Ayele H Negussie, Matthew R Dreher, Carmen Gacchina Johnson, Yiqing Tang, Andrew L Lewis, Gert Storm, Karun V Sharma, Bradford J Wood
ABSTRACT

Therapeutic embolization of blood vessels is a minimally invasive, catheter-based procedure performed with solid or liquid emboli to treat bleeding, vascular malformations, and vascular tumors. Hepatocellular carcinoma (HCC) affects about half a million people per year. When unresectable, HCC is treated with embolization and local drug therapy by transarterial chemoembolization (TACE). For TACE, drug eluting beads (DC Bead(®)) may be used to occlude or reduce arterial blood supply and deliver chemotherapeutics locally to the tumor. Although this treatment has been shown to be safe and to improve patient survival, the procedure lacks imaging feedback regarding the location of embolic agent and drug coverage. To address this shortcoming, herein we report the synthesis and characterization of image-able drug eluting beads (iBeads) from the commercial DC Bead(®) product. Two different radiopaque beads were synthesized. In one approach, embolic beads were conjugated with 2,3,5-triiodobenzyl alcohol in the presence of 1,1'-carbonyldiimidazol to give iBead I. iBead II was synthesized with a similar approach but instead using a trimethylenediamine spacer and 2,3,5-triiodobenzoic acid. Doxorubicin was loaded into the iBeads II using a previously reported method. Size and shape of iBeads were evaluated using an upright microscope and their conspicuity assessed using a clinical CT and micro-CT. Bland and Dox-loaded iBeads II visualized with both clinical CT and microCT. Under microCT, individual bland and Dox loaded beads had a mean attenuation of 7904 ± 804 and 11,873.96 ± 706.12 HU, respectively. These iBeads have the potential to enhance image-guided TACE procedures by providing localization of embolic-particle and drug.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
2,3,5-Triiodobenzoic acid, BioReagent, suitable for plant cell culture, ≥97% (HPLC)
Sigma-Aldrich
Triethylamine, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, for protein sequence analysis, ampule, ≥99.5% (GC)
Sigma-Aldrich
CDI, ≥97.0% (T)
Sigma-Aldrich
Triethylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
2,3,5-Triiodobenzoic acid, 98%
Sigma-Aldrich
CDI, reagent grade
Sigma-Aldrich
1-Hydroxybenzotriazole hydrate, ≥97.0% dry basis (T)
Sigma-Aldrich
1-Hydroxybenzotriazole hydrate, wetted with not less than 20 wt. % water, 97% dry basis
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
4-(Dimethylamino)pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
1,3-Diaminopropane, ≥99%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Diisopropylcarbodiimide solution, 1 M in THF