跳转至内容
Merck
CN
  • A qualitative method for prediction of amine oxidation in methanol and water.

A qualitative method for prediction of amine oxidation in methanol and water.

Journal of pharmaceutical sciences (2015-02-26)
Carina Bäcktorp, Eivor Örnskov, Emma Evertsson, Johan Remmelgas, Anders Broo
摘要

We have developed a predictive method, based on quantum chemical calculations, that qualitatively predicts N-oxidation by hydrogen peroxides in drug structures. The method uses linear correlations of two complementary approaches to estimate the activation barrier without calculating it explicitly. This method can therefore be automated as it avoids demanding transition state calculations. As such, it may be used by chemists without experience in molecular modeling and provide additional understanding to experimental findings. The predictive method gives relative rates for N,N-dimethylbenzylamine and N-methylmorpholine in good agreement with experiments. In water, the experimental rate constants show that N,N-dimethylbenzylamine is oxidized three times faster than N-methylmorpholine and in methanol it is two times faster. The method suggests it to be two and five times faster, respectively. The method was also used to correlate experimental with predicted activation barriers, linear free-energy relationships, for a test set of tertiary amines. A correlation coefficient R(2) = 0.74 was obtained, where internal diagnostics in the method itself allowed identification of outliers. The method was applied to four drugs: caffeine, azelastine, buspirone, and clomipramine, all possessing several nitrogens. Both overall susceptibility and selectivity of oxidation were predicted, and verified by experiments.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
三氟乙酸, ReagentPlus®, 99%
Sigma-Aldrich
三氟乙酸, suitable for HPLC, ≥99.0%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
三氟乙酸, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
三氟乙酸, ≥99%, for protein sequencing
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
过氧化氢 溶液, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 35 wt. % in H2O
Millipore
过氧化氢 溶液, 3%, suitable for microbiology
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
甲酸, ≥95%, FCC, FG