跳转至内容
Merck
CN
  • Charging of poly(methyl methacrylate) (PMMA) colloids in cyclohexyl bromide: locking, size dependence, and particle mixtures.

Charging of poly(methyl methacrylate) (PMMA) colloids in cyclohexyl bromide: locking, size dependence, and particle mixtures.

Langmuir : the ACS journal of surfaces and colloids (2014-12-24)
Marjolein N van der Linden, Johan C P Stiefelhagen, Gülşen Heessels-Gürboğa, Jessi E S van der Hoeven, Nina A Elbers, Marjolein Dijkstra, Alfons van Blaaderen
摘要

We studied suspensions of sterically stabilized poly(methyl methacrylate) (PMMA) particles in the solvent cyclohexyl bromide (CHB; εr = 7.92). We performed microelectrophoresis measurements on suspensions containing a single particle species and on binary mixtures, using confocal microscopy to measure the velocity profiles of the particles. We measured the charge of so-called locked PMMA particles, for which the steric stabilizer, a comb-graft stabilizer of poly(12-hydroxystearic acid) (PHSA) grafted on a backbone of PMMA, was covalently bonded to the particle, and for unlocked particles, for which the stabilizer was adsorbed to the surface of the particle. We observed that locked particles had a significantly higher charge than unlocked particles. We found that the charge increase upon locking was due to chemical coupling of 2-(dimethylamino)ethanol to the PMMA particles, which was used as a catalyst for the locking reaction. For particles of different size we obtained the surface potential and charge from the electrophoretic mobility of the particles. For locked particles we found that the relatively high surface potential (∼ +5.1 kBT/e or +130 mV) was roughly constant for all particle diameters we investigated (1.2 μm < σ < 4.4 μm), and that the particle charge was proportional to the square of the diameter.

材料
货号
品牌
产品描述

Sigma-Aldrich
氧化铝, activated, basic, Brockmann I
Sigma-Aldrich
氧化铝, activated, neutral, Brockmann I
Sigma-Aldrich
氧化铝, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
氧化铝, activated, acidic, Brockmann I
Sigma-Aldrich
氧化铝, powder, 99.99% trace metals basis
Sigma-Aldrich
氧化铝, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
氧化铝, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
氧化铝, pellets, 3 mm
Sigma-Aldrich
氧化铝, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
氧化铝, Corundum, α-phase, -100 mesh
Sigma-Aldrich
溴代环己烷, 98%
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
氧化铝, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
氧化铝, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
氧化铝, pore size 58 Å, ~150 mesh
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
氧化铝, 99.997% trace metals basis
Supelco
氧化铝, activated, neutral, Brockmann Activity I
Sigma-Aldrich
氧化铝, single crystal substrate, <0001>
Sigma-Aldrich
氧化铝, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
介孔氧化铝, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
氧化铝, activated, acidic, Brockmann I, free-flowing, Redi-Dri
Sigma-Aldrich
氧化铝, activated, neutral, Brockmann I, free-flowing, Redi-Dri
Supelco
氧化铝, for the determination of hydrocarbons