跳转至内容

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Interleukin 1beta induces type II-secreted phospholipase A(2) gene in vascular smooth muscle cells by a nuclear factor kappaB and peroxisome proliferator-activated receptor-mediated process.

Interleukin 1beta induces type II-secreted phospholipase A(2) gene in vascular smooth muscle cells by a nuclear factor kappaB and peroxisome proliferator-activated receptor-mediated process.

The Journal of biological chemistry (1999-08-07)
C Couturier, A Brouillet, C Couriaud, K Koumanov, G Béréziat, M Andréani
摘要

Type II-secreted phospholipase A(2) (type II-sPLA(2)) is expressed in smooth muscle cells during atherosclerosis or in response to interleukin-1beta. The present study shows that the induction of type II-sPLA(2) gene by interleukin-1beta requires activation of the NFkappaB pathway and cytosolic PLA(2)/PPARgamma pathway, which are both necessary to achieve the transcriptional process. Interleukin-1beta induced type II-sPLA(2) gene dose- and time-dependently and increased the binding of NFkappaB to a specific site of type II-sPLA(2) promoter. This effect was abolished by proteinase inhibitors that block the proteasome machinery and NFkappaB nuclear translocation. Type II-sPLA(2) induction was also obtained by free arachidonic acid and was blocked by either AACOCF(3), a specific cytosolic-PLA(2) inhibitor, PD98059, a mitogen-activated protein kinase kinase inhibitor which prevents cytosolic PLA(2) activation, or nordihydroguaiaretic acid, a lipoxygenase inhibitor, but not by the cyclooxygenase inhibitor indomethacin, suggesting a role for a lipoxygenase product. Type II-sPLA(2) induction was obtained after treatment of the cells by 15-deoxy-Delta(12,14)-dehydroprostaglandin J(2), carbaprostacyclin, and 9-hydroxyoctadecadienoic acid, which are ligands of peroxisome proliferator-activated receptor (PPAR) gamma, whereas PPARalpha ligands were ineffective. Interleukin-1beta as well as PPARgamma-ligands stimulated the activity of a reporter gene containing PPARgamma-binding sites in its promoter. Binding of both NFkappaB and PPARgamma to their promoter is required to stimulate the transcriptional process since inhibitors of each class block interleukin-1beta-induced type II-sPLA(2) gene activation. We therefore suggest that NFkappaB and PPARgamma cooperate at the enhanceosome-coactivator level to turn on transcription of the proinflammatory type II-sPLA(2) gene.