跳转至内容
Merck
CN
  • Interleukin 1beta induces type II-secreted phospholipase A(2) gene in vascular smooth muscle cells by a nuclear factor kappaB and peroxisome proliferator-activated receptor-mediated process.

Interleukin 1beta induces type II-secreted phospholipase A(2) gene in vascular smooth muscle cells by a nuclear factor kappaB and peroxisome proliferator-activated receptor-mediated process.

The Journal of biological chemistry (1999-08-07)
C Couturier, A Brouillet, C Couriaud, K Koumanov, G Béréziat, M Andréani
摘要

Type II-secreted phospholipase A(2) (type II-sPLA(2)) is expressed in smooth muscle cells during atherosclerosis or in response to interleukin-1beta. The present study shows that the induction of type II-sPLA(2) gene by interleukin-1beta requires activation of the NFkappaB pathway and cytosolic PLA(2)/PPARgamma pathway, which are both necessary to achieve the transcriptional process. Interleukin-1beta induced type II-sPLA(2) gene dose- and time-dependently and increased the binding of NFkappaB to a specific site of type II-sPLA(2) promoter. This effect was abolished by proteinase inhibitors that block the proteasome machinery and NFkappaB nuclear translocation. Type II-sPLA(2) induction was also obtained by free arachidonic acid and was blocked by either AACOCF(3), a specific cytosolic-PLA(2) inhibitor, PD98059, a mitogen-activated protein kinase kinase inhibitor which prevents cytosolic PLA(2) activation, or nordihydroguaiaretic acid, a lipoxygenase inhibitor, but not by the cyclooxygenase inhibitor indomethacin, suggesting a role for a lipoxygenase product. Type II-sPLA(2) induction was obtained after treatment of the cells by 15-deoxy-Delta(12,14)-dehydroprostaglandin J(2), carbaprostacyclin, and 9-hydroxyoctadecadienoic acid, which are ligands of peroxisome proliferator-activated receptor (PPAR) gamma, whereas PPARalpha ligands were ineffective. Interleukin-1beta as well as PPARgamma-ligands stimulated the activity of a reporter gene containing PPARgamma-binding sites in its promoter. Binding of both NFkappaB and PPARgamma to their promoter is required to stimulate the transcriptional process since inhibitors of each class block interleukin-1beta-induced type II-sPLA(2) gene activation. We therefore suggest that NFkappaB and PPARgamma cooperate at the enhanceosome-coactivator level to turn on transcription of the proinflammatory type II-sPLA(2) gene.