跳转至内容
Merck
CN
  • Synthesis and dual D2 and 5-HT1A receptor binding affinities of 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones.

Synthesis and dual D2 and 5-HT1A receptor binding affinities of 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones.

Journal of enzyme inhibition and medicinal chemistry (2013-03-16)
Nisar Ullah
摘要

A series of new 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones have been synthesized and evaluated for dual D2 and 5-HT1A receptor binding affinities. The synthesized ligands are structurally related to bifeprunox, a potential atypical antipsychotic, having potent D2 receptor antagonist and 5-HT1A receptor agonist properties. The Suzuki-Miyaura reaction of cyclic vinyl boronate with appropriate aryl halide yielded arylpiperidine, which was eventually transformed to piperidinyl-1H-benzo[d]imidazol-2(3H)-one. The reductive amination of the latter with appropriate biarylaldehdyes rendered the synthesis of 5-piperidinyl-1H-benzo[d]imidazol-2(3H)-ones. Likewise, the Buchwald-Hartwig coupling reactions of 1-boc-piperazine with appropriate aryl halide and subsequent removal of the boc group rendered arylpiperazine. The reductive amination of the latter with appropriate biarylaldehdyes accomplished the synthesis of 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones. The structure-activity relationship studies showed that cyclopentenylpyridine and cyclopentenylbenzyl groups contribute significantly to the dual D2 and 5-HT1A receptor binding affinities of these compounds.

材料
货号
品牌
产品描述

Sigma-Aldrich
1-Boc-哌嗪, 97%
Sigma-Aldrich
1-Boc-哌嗪, ≥98.0% (GC)