- Detection of stanozolol in hair by negative ion chemical ionization mass spectrometry.
Detection of stanozolol in hair by negative ion chemical ionization mass spectrometry.
Stanozolol is an anabolic androgenic steroid occasionally abused by athletes. A sensitive, specific, and reproducible method for the quantitative determination of stanozolol in hair has been developed. After the addition of stanozolol-d3 as the internal standard, hair samples (10-25 mg) were digested with 2 mL of 1N NaOH at 65 degrees C for at least 2 h. Digest solutions were then extracted using solid-phase extraction. The eluents were evaporated, a mixture of N-methyl-N-trimethylsilylhepta-fluorobutryamide (MSHFBA) and trimethylsilylimidazole (TSIM) (1000:20, v/v) was added, and the mixture heated at 80 degrees C for 5 minutes. After cooling to room temperature, N-methyl-bisheptafluorobutyramide (MBHFBA) was added and the mixture heated at 80 degrees C for 30 min. The derivatized extracts were analyzed on a Finnigan MATTM 4500 mass spectrometer in the negative chemical ionization mode. Chromatographic separation was achieved with helium carrier gas on a HP-1 capillary column (15 m x 0.2-mm i.d.; 33-microns film thickness). The assay was capable of reliably quantitating 50 pg/mg of stanozolol and was linear to 2500 pg/mg. Intra-assay precision was 13.2% at 50 pg/mg and 6.6% at 2500 pg/mg. Interassay precision was 13.7% at 50 pg/mg and 6.1% at 2500 pg/mg. This method has been applied to the analysis of stanozolol incorporated into rat hair. Male Long-Evans rats were given stanozolol 20 mg/kg intraperitoneally once daily for 3 days. The mean concentrations of stanozolol in the rat hair collected on day 14 were 362.4 +/- 332.4 pg/mg in pigmented hair and 90.0 +/- 46.9 pg/mg in nonpigmented hair. These data demonstrate that stanozolol is incorporated preferentially into pigmented hair.