跳转至内容
Merck
CN
  • The nanofibrous architecture of poly(L-lactic acid)-based functional copolymers.

The nanofibrous architecture of poly(L-lactic acid)-based functional copolymers.

Biomaterials (2009-09-29)
Xiaohua Liu, Peter X Ma
摘要

It remains a challenge to synthesize functional materials that can develop advanced scaffolding architectures for tissue engineering. In this study, a series of biodegradable amphiphilic poly(hydroxyalkyl (meth)acrylate)-graft-poly(l-lactic acid) (PHAA-g-PLLA) copolymers have been synthesized and fabricated into nano-fibrous scaffolds. These copolymers can be further functionalized, are more hydrophilic, and have faster degradation rates than the PLLA homopolymer, which are advantageous for certain tissue engineering applications. First, PLLA-based macromonomers were prepared by using functional hydroxyalkyl (meth)acrylates (HAA) as initiators. The PHAA-g-PLLA copolymers were then synthesized using free radical copolymerization of PLLA-based macromonomers and HAA. Nano-fibrous architecture was created using a thermally induced phase separation technique from these functional PHAA-g-PLLA copolymers. The nano-fibrous structure mimics the architecture of natural collagen matrix at the nanometer scale. The effects of the macromonomer composition, copolymer composition, blending ratio, and solvent selection on nano-scale structures were studied. In general, the nano-fibrous structure was created when the amount of HAA in the macromonomer was low. By increasing the amount of HAA in the macromonomer, microspheres with nano-fibrous surfaces were obtained. Further increasing the amount of HAA led to the creation of microspheres with leaf-like surfaces. These PLLA-based materials had much faster degradation rates than the PLLA, and could be completely degraded from several weeks to a few months depending on their composition and molecular weight. Furthermore, the PHAA-g-PLLA copolymers possess functional hydroxyl groups, which can be used to couple with bioactive molecules to control cell-material interactions. Therefore, these biodegradable functional copolymers have the design flexibility to fabricate various biomimetic materials for tissue engineering applications.

材料
货号
品牌
产品描述

Sigma-Aldrich
1,4-二氧六环, ACS reagent, ≥99.0%, contains ≤25 ppm BHT as stabilizer
登录查看公司和协议定价
货号包装规格是否有货价格数量
500 mL
有货
详情...
¥1,227.04
1 L
请联系客服了解存货情况
¥1,435.19
2 L
请联系客服了解存货情况
¥2,037.76
4 x 2.5 L
请联系客服了解存货情况
¥15,835.16
Sigma-Aldrich
1,4-二氧六环, ACS reagent, ≥99.0%
登录查看公司和协议定价
货号包装规格是否有货价格数量
1 L
有货
详情...
¥1,729.49
4 L
请联系客服了解存货情况
¥3,252.04
Sigma-Aldrich
1,4-二氧六环, suitable for HPLC, ≥99.5%
登录查看公司和协议定价
货号包装规格是否有货价格数量
1 L
预计发货时间 2026年3月05日
详情...
¥3,148.16
Sigma-Aldrich
1,4-二氧六环, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
登录查看公司和协议定价
货号包装规格是否有货价格数量
1 L
有货
详情...
¥1,785.98
Sigma-Aldrich
1,4-二氧六环, ReagentPlus®, ≥99%, contains ≤25 ppm BHT as stabilizer
登录查看公司和协议定价
货号包装规格是否有货价格数量
500 mL
请联系客服了解存货情况
¥584.71
1 L
请联系客服了解存货情况
¥968.70
2.5 L
请联系客服了解存货情况
¥1,249.37
10 L
请联系客服了解存货情况
¥4,544.30
Sigma-Aldrich
1,4-二氧六环, anhydrous, 99.8%, contains <=25 ppm BHT as stabilizer
货号
包装规格
是否有货
价格
数量
Supelco
1,4-二氧六环, analytical standard
货号
包装规格
是否有货
价格
数量