跳转至内容
Merck
CN
  • Calponin-homology domain mediated bending of membrane-associated actin filaments.

Calponin-homology domain mediated bending of membrane-associated actin filaments.

eLife (2021-07-17)
Saravanan Palani, Sayantika Ghosh, Esther Ivorra-Molla, Scott Clarke, Andrejus Suchenko, Mohan K Balasubramanian, Darius Vasco Köster
摘要

Actin filaments are central to numerous biological processes in all domains of life. Driven by the interplay with molecular motors, actin binding and actin modulating proteins, the actin cytoskeleton exhibits a variety of geometries. This includes structures with a curved geometry such as axon-stabilizing actin rings, actin cages around mitochondria and the cytokinetic actomyosin ring, which are generally assumed to be formed by short linear filaments held together by actin cross-linkers. However, whether individual actin filaments in these structures could be curved and how they may assume a curved geometry remains unknown. Here, we show that 'curly', a region from the IQGAP family of proteins from three different organisms, comprising the actin-binding calponin-homology domain and a C-terminal unstructured domain, stabilizes individual actin filaments in a curved geometry when anchored to lipid membranes. Although F-actin is semi-flexible with a persistence length of ~10 μm, binding of mobile curly within lipid membranes generates actin filament arcs and full rings of high curvature with radii below 1 μm. Higher rates of fully formed actin rings are observed in the presence of the actin-binding coiled-coil protein tropomyosin and when actin is directly polymerized on lipid membranes decorated with curly. Strikingly, curly induced actin filament rings contract upon the addition of muscle myosin II filaments and expression of curly in mammalian cells leads to highly curved actin structures in the cytoskeleton. Taken together, our work identifies a new mechanism to generate highly curved actin filaments, which opens a range of possibilities to control actin filament geometries, that can be used, for example, in designing synthetic cytoskeletal structures.

材料
货号
品牌
产品描述

Sigma-Aldrich
原儿茶酸3,4-双加氧酶 来源于假单胞菌 属, lyophilized powder, ≥3 units/mg solid
奎诺二甲基丙烯酸酯, A cell-permeable, water-soluble derivative of vitamin E with antioxidant properties. Prevents peroxynitrite-mediated oxidative stress and apoptosis in rat thymocytes.
原儿茶酸, primary reference standard