跳转至内容
Merck
CN
  • Versatility of microglial bioenergetic machinery under starving conditions.

Versatility of microglial bioenergetic machinery under starving conditions.

Biochimica et biophysica acta. Bioenergetics (2017-12-24)
Adam M Nagy, Rebeka Fekete, Gergo Horvath, Gabor Koncsos, Csilla Kriston, Anna Sebestyen, Zoltan Giricz, Zsuzsanna Kornyei, Emilia Madarasz, Laszlo Tretter
摘要

Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.

材料
货号
品牌
产品描述

Sigma-Aldrich
杜氏改良 Eagle 培养基 - 高葡萄糖, With 4500 mg/L glucose, sodium pyruvate, and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Eagle最低必需培养基, With Earle′s salts and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture