跳转至内容

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN
  • Rhabdomyolysis-Induced AKI Was Ameliorated in NLRP3 KO Mice via Alleviation of Mitochondrial Lipid Peroxidation in Renal Tubular Cells.

Rhabdomyolysis-Induced AKI Was Ameliorated in NLRP3 KO Mice via Alleviation of Mitochondrial Lipid Peroxidation in Renal Tubular Cells.

International journal of molecular sciences (2020-11-19)
Seok Jong Song, Su-Mi Kim, Sang-Ho Lee, Ju-Young Moon, Hyeon Seok Hwang, Jin Sug Kim, Seon-Hwa Park, Kyung Hwan Jeong, Yang Gyun Kim
摘要

A recent study showed that early renal tubular injury is ameliorated in Nod-like receptor pyrin domain-containing protein 3 (NLRP3) KO mice with rhabdomyolysis-induced acute kidney injury (RIAKI). However, the precise mechanism has not been determined. Therefore, we investigated the role of NLRP3 in renal tubular cells in RIAKI. Glycerol-mediated RIAKI was induced in NLRP3 KO and wild-type (WT) mice. The mice were euthanized 24 h after glycerol injection, and both kidneys and plasma were collected. HKC-8 cells were treated with ferrous myoglobin to mimic a rhabdomyolytic environment. Glycerol injection led to increase serum creatinine, aspartate aminotransferase (AST), and renal kidney injury molecule-1 (KIM-1) level; renal tubular necrosis; and apoptosis. Renal injury was attenuated in NLRP3 KO mice, while muscle damage and renal neutrophil recruitment did not differ between NLRP3 KO mice and WT mice. Following glycerin injection, increases in cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), and a decrease in the glutathione peroxidase 4 (GPX-4) level were observed in the kidneys of mice with RIAKI, and these changes were alleviated in the kidneys of NLRP3 KO mice. NLRP3 was upregulated, and cell viability was suppressed in HKC-8 cells treated with ferrous myoglobin. Myoglobin-induced apoptosis and lipid peroxidation were significantly decreased in siNLRP3-treated HKC-8 cells compared to ferrous myoglobin-treated HKC-8 cells. Myoglobin reduced the mitochondrial membrane potential and increased mitochondrial fission and reactive oxygen species (ROS) and lipid peroxidation levels, which were restored to normal levels in NLRP3-depleted HKC-8 cells. NLRP3 depletion ameliorated renal tubular injury in a murine glycerol-induced acute kidney injury (AKI) model. A lack of NLRP3 improved tubular cell viability via attenuation of myoglobin-induced mitochondrial injury and lipid peroxidation, which might be the critical factor in protecting the kidney.