跳转至内容
Merck
CN
  • Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing.

Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing.

Nature communications (2020-07-06)
Samantha G Scharenberg, Edina Poletto, Katherine L Lucot, Pasqualina Colella, Adam Sheikali, Thomas J Montine, Matthew H Porteus, Natalia Gomez-Ospina
摘要

Gaucher disease is a lysosomal storage disorder caused by insufficient glucocerebrosidase activity. Its hallmark manifestations are attributed to infiltration and inflammation by macrophages. Current therapies for Gaucher disease include life-long intravenous administration of recombinant glucocerebrosidase and orally-available glucosylceramide synthase inhibitors. An alternative approach is to engineer the patient's own hematopoietic system to restore glucocerebrosidase expression, thereby replacing the affected cells, and constituting a potential one-time therapy for this disease. Here, we report an efficient CRISPR/Cas9-based approach that targets glucocerebrosidase expression cassettes with a monocyte/macrophage-specific element to the CCR5 safe-harbor locus in human hematopoietic stem and progenitor cells. The targeted cells generate glucocerebrosidase-expressing macrophages and maintain long-term repopulation and multi-lineage differentiation potential with serial transplantation. The combination of a safe-harbor and a lineage-specific promoter establishes a universal correction strategy and circumvents potential toxicity of ectopic glucocerebrosidase in the stem cells. Furthermore, it constitutes an adaptable platform for other lysosomal enzyme deficiencies.