- Registered report: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.
Registered report: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from 'A coding-independent function of gene and pseudogene mRNAs regulates tumour biology' by Poliseno et al. (2010), published in Nature in 2010. The key experiments to be replicated are reported in Figures 1D, 2F-H, and 4A. In these experiments, Poliseno and colleagues report microRNAs miR-19b and miR-20a transcriptionally suppress both PTEN and PTENP1 in prostate cancer cells (Figure 1D; Poliseno et al., 2010). Decreased expression of PTEN and/or PTENP1 resulted in downregulated PTEN protein levels (Figure 2H), downregulation of both mRNAs (Figure 2G), and increased tumor cell proliferation (Figure 2F; Poliseno et al., 2010). Furthermore, overexpression of the PTEN 3' UTR enhanced PTENP1 mRNA abundance limiting tumor cell proliferation, providing additional evidence for the co-regulation of PTEN and PTENP1 (Figure 4A; Poliseno et al., 2010). The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife.