跳转至内容
Merck
CN
  • Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells.

Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells.

BMC biology (2021-06-18)
Sara Beji, Marco D'Agostino, Elisa Gambini, Sara Sileno, Alessandro Scopece, Maria Cristina Vinci, Giuseppina Milano, Guido Melillo, Monica Napolitano, Giulio Pompilio, Maurizio C Capogrossi, Daniele Avitabile, Alessandra Magenta
摘要

Doxorubicin (Dox) is an anti-cancer anthracycline drug that causes double-stranded DNA breaks. It is highly effective against several types of tumours; however, it also has adverse effects on regenerative populations of normal cells, such as human cardiac mesenchymal progenitor cells (hCmPCs), and its clinical use is limited by cardiotoxicity. Another known effect of Dox is nucleolar disruption, which triggers the ubiquitously expressed nucleolar phosphoprotein Nucleophosmin (NPM) to be released from the nucleolus into the cell, where it participates in the orchestration of cellular stress responses. NPM has also been observed in the extracellular space in response to different stress stimuli; however, the mechanism behind this and its functional implications are as yet largely unexplored. The aim of this study was to establish whether Dox could elicit NPM secretion in the extracellular space and to elucidate the mechanism of secretion and the effect of extracellular NPM on hCmPCs. We found that following the double-strand break formation in hCmPCs caused by Dox, NPM was rapidly secreted in the extracellular space by an active mechanism, in the absence of either apoptosis or necrosis. Extracellular release of NPM was similarly seen in response to ultraviolet radiation (UV). Furthermore, we observed an increase of NPM levels in the plasma of Dox-treated mice; thus, NPM release also occurred in vivo. The treatment of hCmPCs with extracellular recombinant NPM induced a decrease of cell proliferation and a response mediated through the Toll-like receptor (TLR)4. We demonstrated that NPM binds to TLR4, and via TLR4, and nuclear factor kappa B (NFkB) activation/nuclear translocation, exerts proinflammatory functions by inducing IL-6 and COX-2 gene expression. Finally, we found that in hCmPCs, NPM secretion could be driven by an autophagy-dependent unconventional mechanism that requires TLR4, since TLR4 inhibition dramatically reduced Dox-induced secretion. We hypothesise that the extracellular release of NPM could be a general response to DNA damage since it can be elicited by either a chemical agent such as Dox or a physical genotoxic stressor such as UV radiation. Following genotoxic stress, NPM acts similarly to an alarmin in hCmPCs, being rapidly secreted and promoting cell cycle arrest and a TLR4/NFκB-dependent inflammatory response.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗磷酸组蛋白H2A.X(Ser139)抗体,克隆JBW301, clone JBW301, Upstate®, from mouse
Sigma-Aldrich
抗-β-肌动蛋白−过氧化物酶抗体,小鼠单克隆 小鼠抗, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
NF-κB Activation Inhibitor, The NF-κB Activation Inhibitor, also referenced under CAS 545380-34-5, controls the biological activity of NF-κB. This small molecule/inhibitor is primarily used for Inflammation/Immunology applications.