跳转至内容
Merck
CN
  • The myosin-tail homology domain of centrosomal protein 290 is essential for protein confinement between the inner and outer segments in photoreceptors.

The myosin-tail homology domain of centrosomal protein 290 is essential for protein confinement between the inner and outer segments in photoreceptors.

The Journal of biological chemistry (2019-11-07)
Poppy Datta, Brandon Hendrickson, Sarah Brendalen, Avri Ruffcorn, Seongjin Seo
摘要

Mutations in the centrosomal protein 290 (CEP290) gene cause various ciliopathies involving retinal degeneration. CEP290 proteins localize to the ciliary transition zone and are thought to act as a gatekeeper that controls ciliary protein trafficking. However, precise roles of CEP290 in photoreceptors and pathomechanisms of retinal degeneration in CEP290-associated ciliopathies are not sufficiently understood. Using conditional Cep290 mutant mice, in which the C-terminal myosin-tail homology domain of CEP290 is disrupted after the connecting cilium is assembled, we show that this domain is essential for protein confinement between the inner and the outer segments. Upon disruption of the myosin-tail homology domain, inner segment plasma membrane proteins, including syntaxin 3 (STX3), synaptosome-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2), rapidly accumulated in the outer segment. In contrast, localization of endomembrane proteins was not altered. Trafficking and confinement of most outer segment-resident proteins appeared to be unaffected or only minimally affected in Cep290 mutant mice. One notable exception was rhodopsin (RHO), which severely mislocalized to inner segments during the initial stage of degeneration. Similar mislocalization phenotypes were observed in Cep290rd16 mice. These results suggest that a failure of protein confinement at the connecting cilium and consequent accumulation of inner segment membrane proteins in the outer segment, along with insufficient RHO delivery, is part of the disease mechanisms that cause retinal degeneration in CEP290-associated ciliopathies. Our study provides insights into the pathomechanisms of retinal degenerations associated with compromised ciliary gates.

材料
货号
品牌
产品描述

Sigma-Aldrich
单克隆抗-FLAG® M2 小鼠抗, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
单克隆抗-FLAG® M2-过氧化物酶(HRP) 小鼠抗, clone M2, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
抗 β-肌动蛋白抗体,小鼠单克隆, clone AC-15, purified from hybridoma cell culture
Roche
抗 HA-过氧化物酶,高亲和力, from rat IgG1
Sigma-Aldrich
抗-Centrin抗体,克隆20H5, clone 20H5, from mouse
Sigma-Aldrich
抗 LAMP1 兔抗, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
抗-视紫红质抗体,CT,最后9个氨基酸,克隆Rho 1D4, clone Rho 1D4, Chemicon®, from mouse
Sigma-Aldrich
抗突触融合蛋白3-抗体,克隆1-146, clone 1-146, from mouse
Sigma-Aldrich
Anti-CEP290, from rabbit