- Role of aldosterone in the activation of primary mice hepatic stellate cell and liver fibrosis via NLRP3 inflammasome.
Role of aldosterone in the activation of primary mice hepatic stellate cell and liver fibrosis via NLRP3 inflammasome.
Emerging evidence suggests aldosterone (aldo) and NLRP3 inflammasome are important factors for HSC activation and liver fibrosis. However, the interaction between aldo and NLRP3 inflammasome in HSC activation and liver fibrosis remains largely unknown. The aim of this study is to investigate the relationship between aldo and NLRP3 inflammasome in liver fibrosis. Serum and liver specimens collected from 40 patients with or without liver fibrosis were used to test the level of aldo and NLRP3. Primary HSC isolated from C57BL/6 mice were treated with aldo, and the effects of aldo on NLRP3 inflammasome and HSC activation were detected in vitro. Two animal models were used to verify the effect of aldo on liver fibrosis in vivo: hyperaldosteronism model was established in wild-type and NLRP3 knockout (NLRP3-/- ) mice by micro-pump, and liver fibrosis mouse model was built by tetrachloromethane (CCl4 ). Patients with liver fibrosis showed higher aldo levels and increased NLRP3 expression in liver. In vitro, aldo induced the activation of primary mouse HSCs by promoting the expression and assembly of NLRP3 inflammasome. In vivo, NLRP3 knockout could alleviate the liver fibrosis induced by aldo in mice. In addition, treatment with spironolactone (spi) could inhibit the NLRP3 expression, HSC activation, and liver fibrosis induced by CCl4 . Aldo promotes the activation of HSCs and liver fibrosis through NLRP3 inflammasome relative pathways. Intervention of aldo and NLRP3 inflammasome-related pathways may provide a promising strategy for treatment of liver fibrosis.