跳转至内容
Merck
CN
  • TBC1D9 regulates TBK1 activation through Ca2+ signaling in selective autophagy.

TBC1D9 regulates TBK1 activation through Ca2+ signaling in selective autophagy.

Nature communications (2020-02-09)
Takashi Nozawa, Shunsuke Sano, Atsuko Minowa-Nozawa, Hirotaka Toh, Shintaro Nakajima, Kazunori Murase, Chihiro Aikawa, Ichiro Nakagawa
摘要

Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TBK1 activation in response to microbial infection is not clear. Here, we show that bacterial infection increases Ca2+ levels to activate TBK1 for xenophagy via the Ca2+-binding protein TBC1 domain family member 9 (TBC1D9). Mechanistically, the ubiquitin-binding region (UBR) and Ca2+-binding motif of TBC1D9 mediate its binding with ubiquitin-positive bacteria, and TBC1D9 knockout suppresses TBK1 activation and subsequent recruitment of the ULK1 complex. Treatment with a Ca2+ chelator impairs TBC1D9-ubiquitin interactions and TBK1 activation during xenophagy. TBC1D9 is also recruited to damaged mitochondria through its UBR and Ca2+-binding motif, and is required for TBK1 activation during mitophagy. These results indicate that TBC1D9 controls TBK1 activation during xenophagy and mitophagy through Ca2+-dependent ubiquitin-recognition.

材料
货号
品牌
产品描述

Millipore
抗-FLAG® M2亲和凝胶, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
抗-泛素抗体,Lys63 特异性,克隆Apu3,兔单克隆, clone Apu3, from rabbit
Sigma-Aldrich
光溜海绵素C, film
Sigma-Aldrich
抗-泛素抗体,Lys48 特异性,克隆 Apu2,兔单克隆, clone Apu2, from rabbit
Sigma-Aldrich
MISSION® esiRNA, targeting human ULK1
Sigma-Aldrich
MISSION® esiRNA, targeting human ITPR2
Sigma-Aldrich
MISSION® esiRNA, targeting human ULK2
Sigma-Aldrich
MISSION® esiRNA, targeting human ITPR1
Sigma-Aldrich
MISSION® esiRNA, targeting human RB1CC1
Sigma-Aldrich
MISSION® esiRNA, targeting human ITPR3
Sigma-Aldrich
MISSION® esiRNA, targeting human TBC1D9