- Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy.
Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy.
This work explored the application of matrix metalloproteinase 2-targeted superparamagnetic nanoprobes for magnetic resonance imaging (MRI), near infrared (NIR) fluorescence imaging and photodynamic therapy of tumors. PEG, PAMAM (G5) and matrix metalloproteinase 2 (MMP2) were attached to the surface of carboxylated Fe3O4 nanoparticles (NPs) using a chemical coupling method and then finally loaded with the photosensitizer chlorin e6 (Ce6). In vitro and in vivo experiments demonstrated that the Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes exhibited excellent stability, precise tumor targeting and biocompatibility. Furthermore, the fluorescence properties of Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes were analogous to Ce6 and could be employed for fluorescence imaging. Meanwhile, the Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes have also been shown to be effective as contrast agents for T2-weighted MRI. The target molecule MMP2 enhanced the tumor targeting ability of Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes. Additionally, the Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes significantly inhibited tumor growth compared with PBS and free Ce6. This work will inspire greater enthusiasm for the construction of multifunctional magnetic nanoplatforms for biomedical applications.