跳转至内容

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications.

A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications.

Nature medicine (2010-05-25)
Zhi Sheng, Li Li, Lihua J Zhu, Thomas W Smith, Andrea Demers, Alonzo H Ross, Richard P Moser, Michael R Green
摘要

Activating transcription factor-5 (ATF5) is highly expressed in malignant glioma and has a key role in promoting cell survival. Here we perform a genome-wide RNAi screen to identify transcriptional regulators of ATF5. Our results reveal an essential survival pathway in malignant glioma, whereby activation of a RAS-mitogen-activated protein kinase or phosphoinositide-3-kinase signaling cascade leads to induction of the transcription factor cAMP response element-binding protein-3-like-2 (CREB3L2), which directly activates ATF5 expression. ATF5, in turn, promotes survival by stimulating transcription of myeloid cell leukemia sequence-1 (MCL1), an antiapoptotic B cell leukemia-2 family member. Analysis of human malignant glioma samples indicates that ATF5 expression inversely correlates with disease prognosis. The RAF kinase inhibitor sorafenib suppresses ATF5 expression in glioma stem cells and inhibits malignant glioma growth in cell culture and mouse models. Our results demonstrate that ATF5 is essential in malignant glioma genesis and reveal that the ATF5-mediated survival pathway described here provides potential therapeutic targets for treatment of malignant glioma.