跳转至内容

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN

Controlled Preparation of Nanoparticle Gradient Materials by Diffusion.

Nanomaterials (Basel, Switzerland) (2019-07-22)
Andreas Spinnrock, Max Martens, Florian Enders, Klaus Boldt, Helmut Cölfen
摘要

Nanoparticle gradient materials combine a concentration gradient of nanoparticles with a macroscopic matrix. This way, specific properties of nanoscale matter can be transferred to bulk materials. These materials have great potential for applications in optics, electronics, and sensors. However, it is challenging to monitor the formation of such gradient materials and prepare them in a controlled manner. In this study, we present a novel universal approach for the preparation of this material class using diffusion in an analytical ultracentrifuge. The nanoparticles diffuse into a molten thermoreversible polymer gel and the process is observed in real-time by measuring the particle concentrations along the length of the material to establish a systematic understanding of the gradient generation process. We extract the apparent diffusion coefficients using Fick's second law of diffusion and simulate the diffusion behavior of the particles. When the desired concentration gradient is achieved the polymer solution is cooled down to fix the concentration gradient in the formed gel phase and obtain a nanoparticle gradient material with the desired property gradient. Gradients of semiconductor nanoparticles with different sizes, fluorescent silica particles, and spherical superparamagnetic iron oxide nanoparticles are presented. This method can be used to produce tailored nanoparticle gradient materials with a broad range of physical properties in a simple and predictable way.