- Pilot-scale production and characterization of paramyosin, a vaccine candidate for schistosomiasis japonica.
Pilot-scale production and characterization of paramyosin, a vaccine candidate for schistosomiasis japonica.
Despite effective chemotherapy, schistosomiasis remains a major public health problem in the developing world, with at least 200 million active infections resulting in significant morbidity. Rapid reinfection after treatment, accompanied by extensive residual morbidity, mandates alternative control strategies, including vaccine development. Paramyosin, a myofibrillar protein found only in invertebrates, has been widely studied as a vaccine candidate for both Schistosoma mansoni and Schistosoma japonicum. Recently, we demonstrated that Th2-biased immune responses to paramyosin are associated with resistance to reinfection with S. japonicum in humans; however, challenges in the pilot-scale production of schistosome paramyosin have hampered further studies of this promising vaccine candidate. Here we report a method for the pilot-scale expression and purification of recombinant S. japonicum paramyosin (rSj97). rSj97 was extracted from Escherichia coli inclusion bodies and purified with sequential anion-exchange, hydroxyapatite, and size exclusion chromatography. The purified rSj97 was >95% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis and was free of significant endotoxin contamination. We demonstrate that, like native paramyosin, rSj97 adopts an alpha-helical coiled-coil tertiary structure and binds immunoglobulin and collagen. Naïve mice infected with S. japonicum produce anti-rSj97 immunoglobulin G (IgG) antibodies as early as 4 weeks postinfection, while sera collected from S. japonicum-infected individuals contain anti-rSj97 IgE antibodies. Our method for pilot-scale production of recombinant full-length paramyosin will facilitate preclinical evaluation of paramyosin as a vaccine for schistosomiasis.