跳转至内容
Merck
CN

Imaging Ca2+ nanosparks in heart with a new targeted biosensor.

Circulation research (2013-11-22)
Wei Shang, Fujian Lu, Tao Sun, Jiejia Xu, Lin-Lin Li, Yanru Wang, Gang Wang, Liangyi Chen, Xianhua Wang, Mark B Cannell, Shi-Qiang Wang, Heping Cheng
摘要

In cardiac dyads, junctional Ca2+ directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca2+ release from the sarcoplasmic reticulum. Existing probes do not report such local Ca2+ signals because of probe diffusion, so a junction-targeted Ca2+ sensor should reveal new information on cardiac excitation-contraction coupling and its modification in disease states. To investigate Ca2+ signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca2+ biosensor (GCaMP6f) to the junctional space. By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca2+ transients (Ca2+ nanosparks) that were ≈50× smaller in volume than conventional Ca2+ sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca2+ signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca2+ release events. This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca2+ dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.

材料
货号
品牌
产品描述

Sigma-Aldrich
Monoclonal Anti-Ryanodine Receptor antibody produced in mouse, clone C3-33, ascites fluid