产品名称
Histone Octamer full length human, recombinant, expressed in E. coli, ≥90% (SDS-PAGE)
biological source
human
recombinant
expressed in E. coli
assay
≥90% (SDS-PAGE)
form
aqueous solution
mol wt
113.8 kDa
packaging
pkg of 100 μg
technique(s)
cell based assay: suitable
solubility
water: soluble
shipped in
dry ice
storage temp.
−70°C
Gene Information
human ... HIST1H2BG(8339), HIST2H2AC(8338), HIST3H3(8290), HIST4H4(121504)
Application
Histone Octamer full length human has been used to incubate with 12-mesyloxy-NVP along with recombinant human histone H4 to investigate the potential of histones as targets for covalent adduct formation by drug-derived electrophiles.
Biochem/physiol Actions
The nuclear DNA in eukaryotes is found to be associated with histones to form a compact complex called nucleosome. Histones neutralize the electrostatic nature of DNA and function as scaffolding proteins. Each core nucleosome contains two copies each of the core histones H2A, H2B, H3, and H4 to form an octameric complex. This octameric complex contains a central (H3-H4)2 tetramer flanked on both sides with H2A-H2B dimers. The octamer complex function in various stages of chromosome function, chromatin assembly and nucleosome formation. The histone dimer-tetramer interactions are also important in RNA transcription.
General description
Human recombinant histone octamer consisting of 2 molecules each of histones H2A (GenBank Accession No. NM_033445) amino acids 2-130(end) with a N-terminal His-tag, H2B (GenBank Accession No. NM_003528) amino acids 2-126(end) with a N-terminal His-tag, H3 (GenBank Accession No. NM_003532) amino acids 2-137(end) with a N-terminal His-tag, and H4 (GenBank Accession No. NM_003548) amino acids 2-103(end) with a N-terminal His-tag, expressed in an E. coli expression system.
Research Area: Cell Signaling
The histone octamer is a versatile protein assembly that has evolved to serve two opposing functions within the cell. It is required to bind and bend DNA to achieve fivefold compaction and partial charge neutralization of DNA, while also needing to release specific segments of DNA in a coordinated manner to allow the access of DNA-processing enzymes at the appropriate time. A modular assembly of histone dimers (consisting of either H2A and H2B or H3 and H4) binds to approximately 30 bp of DNA and is connected in a flexible yet stable manner to form a fundamental superhelical ′ramp′ with evenly spaced DNA-binding platforms.
The histone octamer is a versatile protein assembly that has evolved to serve two opposing functions within the cell. It is required to bind and bend DNA to achieve fivefold compaction and partial charge neutralization of DNA, while also needing to release specific segments of DNA in a coordinated manner to allow the access of DNA-processing enzymes at the appropriate time. A modular assembly of histone dimers (consisting of either H2A and H2B or H3 and H4) binds to approximately 30 bp of DNA and is connected in a flexible yet stable manner to form a fundamental superhelical ′ramp′ with evenly spaced DNA-binding platforms.
存储类别
10 - Combustible liquids
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
常规特殊物品
此项目有
Kyle M Miller et al.
Biochemical Society transactions, 40(2), 370-376 (2012-03-23)
Inherited or acquired defects in detecting, signalling or repairing DNA damage are associated with various human pathologies, including immunodeficiencies, neurodegenerative diseases and various forms of cancer. Nuclear DNA is packaged into chromatin and therefore the true in vivo substrate of
Vishal V Raut et al.
Annals of botany, 108(7), 1235-1246 (2011-09-08)
In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from
The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix.
Arents G
Proceedings of the National Academy of Sciences of the USA, 88, 10148-10152 (1991)
Covalent histone modification by an electrophilic derivative of the anti-HIV drug nevirapine
Harjivan SG, et al.
Molecules (Basel), 26(5), 1349-1349 (2021)
Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression.
Santisteban MS
The Embo Journal, 16, 2493-2506 (1997)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持