跳转至内容
Merck
CN

SRP0408

Histone Octamer full length human

recombinant, expressed in E. coli, ≥90% (SDS-PAGE)

别名:

Histone Octamer

登录 查看组织和合同定价。

选择尺寸


关于此项目

NACRES:
NA.32
UNSPSC Code:
12352200
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

产品名称

Histone Octamer full length human, recombinant, expressed in E. coli, ≥90% (SDS-PAGE)

biological source

human

recombinant

expressed in E. coli

assay

≥90% (SDS-PAGE)

form

aqueous solution

mol wt

113.8 kDa

packaging

pkg of 100 μg

technique(s)

cell based assay: suitable

solubility

water: soluble

shipped in

dry ice

storage temp.

−70°C

Application

Histone Octamer full length human has been used to incubate with 12-mesyloxy-NVP along with recombinant human histone H4 to investigate the potential of histones as targets for covalent adduct formation by drug-derived electrophiles.

Biochem/physiol Actions

The nuclear DNA in eukaryotes is found to be associated with histones to form a compact complex called nucleosome. Histones neutralize the electrostatic nature of DNA and function as scaffolding proteins. Each core nucleosome contains two copies each of the core histones H2A, H2B, H3, and H4 to form an octameric complex. This octameric complex contains a central (H3-H4)2 tetramer flanked on both sides with H2A-H2B dimers. The octamer complex function in various stages of chromosome function, chromatin assembly and nucleosome formation. The histone dimer-tetramer interactions are also important in RNA transcription.

General description

Human recombinant histone octamer consisting of 2 molecules each of histones H2A (GenBank Accession No. NM_033445) amino acids 2-130(end) with a N-terminal His-tag, H2B (GenBank Accession No. NM_003528) amino acids 2-126(end) with a N-terminal His-tag, H3 (GenBank Accession No. NM_003532) amino acids 2-137(end) with a N-terminal His-tag, and H4 (GenBank Accession No. NM_003548) amino acids 2-103(end) with a N-terminal His-tag, expressed in an E. coli expression system.
Research Area: Cell Signaling
The histone octamer is a versatile protein assembly that has evolved to serve two opposing functions within the cell. It is required to bind and bend DNA to achieve fivefold compaction and partial charge neutralization of DNA, while also needing to release specific segments of DNA in a coordinated manner to allow the access of DNA-processing enzymes at the appropriate time. A modular assembly of histone dimers (consisting of either H2A and H2B or H3 and H4) binds to approximately 30 bp of DNA and is connected in a flexible yet stable manner to form a fundamental superhelical ′ramp′ with evenly spaced DNA-binding platforms.

存储类别

10 - Combustible liquids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

法规信息

常规特殊物品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Kyle M Miller et al.
Biochemical Society transactions, 40(2), 370-376 (2012-03-23)
Inherited or acquired defects in detecting, signalling or repairing DNA damage are associated with various human pathologies, including immunodeficiencies, neurodegenerative diseases and various forms of cancer. Nuclear DNA is packaged into chromatin and therefore the true in vivo substrate of
Vishal V Raut et al.
Annals of botany, 108(7), 1235-1246 (2011-09-08)
In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from
The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix.
Arents G
Proceedings of the National Academy of Sciences of the USA, 88, 10148-10152 (1991)
Covalent histone modification by an electrophilic derivative of the anti-HIV drug nevirapine
Harjivan SG, et al.
Molecules (Basel), 26(5), 1349-1349 (2021)
Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression.
Santisteban MS
The Embo Journal, 16, 2493-2506 (1997)

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持