跳转至内容
Merck
CN

SML1180

Sigma-Aldrich

WWL229

≥98% (HPLC)

别名:

2-(3-Methoxypropyl)-1-piperidinecarboxylic acid 4-nitrophenyl ester, 4-Nitrophenyl 2-(3-methoxypropyl)piperidine-1-carboxylate

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C16H22N2O5
分子量:
322.36
UNSPSC代码:
12161501
PubChem化学物质编号:
NACRES:
NA.77

质量水平

检测方案

≥98% (HPLC)

形式

oil

颜色

colorless to light yellow

储存温度

2-8°C

SMILES字符串

O=C(OC1=CC=C([N+]([O-])=O)C=C1)N2C(CCCOC)CCCC2

InChI

1S/C16H22N2O5/c1-22-12-4-6-13-5-2-3-11-17(13)16(19)23-15-9-7-14(8-10-15)18(20)21/h7-10,13H,2-6,11-12H2,1H3

InChI key

XVBRVSAGMWRVCK-UHFFFAOYSA-N

相关类别

生化/生理作用

WWL229 is a highly selective inhibitor of mouse Carboxylesterase 3 (Ces3) and human CES1 (orthologue of mCes3), serine hydrolases involved in lipolysis in addition to their activities as liver detoxification enzymes. WWL229 inhibits mCes3 with an IC50 of 10 μM, but not Ces1f, ABHD6 or other tested serine hydrolases. In a recent study, hCES1 activity was found to be increased two-fold in obese individuals and patients with type 2 diabetes compared to lean subjects, and is thought to generate surplus fatty acids that can deposit ectopically in tissues. WWL229 inhibits adipocyte basal lipolysis and promotes differentiation and lipid storage in adipocytes.

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

相关内容

The aim of the Cravatt research group is to understand the roles that mammalian enzymes play in physiological and pathological processes and to use this knowledge to identify novel therapeutic targets for the treatment of human disease. To achieve these goals, they develop and apply new technologies that bridge the fields of chemistry and biology, ascribing to the philosophy that the most significant biomedical problems require creative multidisciplinary approaches for their solution. The group's technological innovations address fundamental challenges in systems biology that are beyond the scope of contemporary methods. For instance, enzymes are tightly regulated by post-translational events in vivo, meaning that their activity may not correlate with expression as measured by standard genomic and proteomic approaches. Considering that it is an enzyme's activity, rather than abundance that ultimately dictates its role in cell physiology and pathology, the Cravatt group has introduced a set of proteomic technologies that directly measures this parameter. These activity-based protein profiling (ABPP) methods exploit the power of chemistry to engender new tools and assays for the global analysis of enzyme activities. The enzyme activity profiles generated by ABPP constitute unique molecular portraits of cells and tissues that illuminate how metabolic and signaling networks are regulated in vivo. Additionally, by evaluating enzymes based on functional properties rather than mere abundance, ABPP acquires high-content proteomic information that is enriched in novel markers and targets for the diagnosis and treatment of human disease.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门