推荐产品
质量水平
方案
≥98% (HPLC)
表单
powder
颜色
white to beige
溶解性
DMSO: 5 mg/mL, clear (warmed)
储存温度
2-8°C
SMILES字符串
FC(CC1)(F)CCN1C2=NC(NC3CCN(C(C)C)CC3)=C4C(C=C(OCCCN5CCCC5)C(OC)=C4)=N2
InChI
1S/C29H44F2N6O2/c1-21(2)36-14-7-22(8-15-36)32-27-23-19-25(38-3)26(39-18-6-13-35-11-4-5-12-35)20-24(23)33-28(34-27)37-16-9-29(30,31)10-17-37/h19-22H,4-18H2,1-3H3,(H,32,33,34)
InChI key
RNAMYOYQYRYFQY-UHFFFAOYSA-N
应用
UNC0642 has been used to treat human HeLa cells to inhibit the DNA ligase 1 (LIG1) /UHRF1 (ubiquitin-like with PHD and ring finger domains 1) interaction.
生化/生理作用
UNC0642 is a potent, selective inhibitor of histone methyltransferases G9a (EHMT2) and GLP (EHMT1), which catalyze the mono and dimethylation of lysine 9 of histone 3 (H3K9), and other non-histone substrates such as p53 and WIZ. UNC0642 has an in vitro IC50 <15 nM with greater than 100-fold selectivity over 13 other HMTs and selected representatives of kinases, ion channels, 7TMs, and other epigenetic proteins. UNC0642 has the same potency with improved PK properties relative to UNC0638, which should make it a more useful probe in an in vivo setting. For full characterization details, please visit the UNC0642 probe summary on the Structural Genomics Consortium (SGC) website.
To learn about other SGC chemical probes for epigenetic targets, visit sigma.com/sgc
To learn about other SGC chemical probes for epigenetic targets, visit sigma.com/sgc
UNC0642 is a potent, selective inhibitor of histone methyltransferases; G9a and GLP selective methhylransferase chemical probe.
特点和优势
This compound is a featured product for Gene Regulation research. Click here to discover more featured Gene Regulation products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
UNC0642 is an epigenetic chemical probe available through a partnership with the Structural Genomics Consortium (SGC). To learn more and view other SGC epigenetic probes, visit sigma.com/SGC.
其他说明
UNC0642 has been expertly reviewed and recommended by the Chemical Probes Portal. For more information, please visit the UNC0642 probe summary on the Chemical Probes Portal website.
相关产品
产品编号
说明
价格
储存分类代码
11 - Combustible Solids
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
历史批次信息供参考:
分析证书(COA)
Lot/Batch Number
Yue-Peng Cao et al.
Acta pharmacologica Sinica, 40(8), 1076-1084 (2019-02-16)
Urinary bladder cancer (UBC) is characterized by frequent recurrence and metastasis despite the standard chemotherapy with gemcitabine and cisplatin combination. Histone modifiers are often dysregulated in cancer development, thus they can serve as an excellent drug targets for cancer therapy.
Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation.
Ferry L, et al.
Molecular Cell, 67(4), 550-565 (2017)
Tiffani D M Berkel et al.
The international journal of neuropsychopharmacology, 22(4), 292-302 (2018-12-28)
Tolerance to ethanol-induced anxiolysis promotes alcohol intake, thus contributing to alcohol use disorder development. Recent studies implicate histone deacetylase-mediated histone H3K9 deacetylation in regulating neuropeptide Y expression during rapid ethanol tolerance to the anxiolytic effects of ethanol. Furthermore, the histone
Patricia D B Tiburcio et al.
Translational oncology, 13(10), 100819-100819 (2020-07-06)
Malignant gliomas have disproportionally high morbidity and mortality. Heterozygous mutations in the isocitrate dehydrogenase 1 (IDH1) gene are most common in glioma, resulting in predominantly arginine to histidine substitution at codon 132. Because IDH1R132H requires a wild-type allele to produce
Kazuya Ishiguro et al.
Cell death discovery, 7(1), 7-7 (2021-01-14)
Epigenetic mechanisms such as histone modification play key roles in the pathogenesis of multiple myeloma (MM). We previously showed that EZH2, a histone H3 lysine 27 (H3K27) methyltransferase, and G9, a H3K9 methyltransferase, are potential therapeutic targets in MM. Moreover
商品
We offer a variety of small molecule research tools, such as transcription factor modulators, inhibitors of chromatin modifying enzymes, and agonists/antagonists for target identification and validation in gene regulation research; a selection of these research tools is shown below.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门