产品名称
Anti-DGCR8 (N-terminal) antibody produced in rabbit, ~1.0 mg/mL, affinity isolated antibody
biological source
rabbit
conjugate
unconjugated
antibody form
affinity isolated antibody
antibody product type
primary antibodies
clone
polyclonal
form
buffered aqueous solution
mol wt
antigen ~100 kDa
species reactivity
human
packaging
antibody small pack of 25 μL
concentration
~1.0 mg/mL
technique(s)
immunoprecipitation (IP): 2.5-5 μg using lysates of HEK-293T cells over expressing human DGCR8
indirect immunofluorescence: 2-5 μg/mL using paraformaldehyde fixed HEK-293T cells over expressing human DGCR8
western blot: 1-2 μg/mL using lysates of HEK-293T cells over expressing human DGCR8
UniProt accession no.
shipped in
dry ice
storage temp.
−20°C
target post-translational modification
unmodified
Gene Information
human ... DGCR8(54487)
mouse ... Dgcr8(94223)
Application
Anti-DGCR8 (N-terminal) antibody produced in rabbit has been used in western blotting.
Anti-DGCR8 (N-terminal) antibody produced in rabbit has been used in:
- western blotting
- immunoprecipitation
- immunofluorescence
Anti-DGCR8 (N-terminal) antibody produced in rabbit is suitable for immunoprecipitation (2.5-5μg using lysates of HEK-293T cells over expressing human DGCR8), indirect immunofluorescence (2-5μg/mL using paraformaldehyde fixed HEK-293T cells over expressing human DGCR8) and western blot at a dilution of 1-2μg/mL (using lysates of HEK-293T cells over expressing human DGCR8).
Biochem/physiol Actions
DGCR8 (DGCR8 microprocessor complex subunit) participates in the biogenesis of microRNA (miRNA, miR) as a major component of the microprocessor complex. DGCR8 provides guidance to the RNase III enzyme, Drosha during rRNA processing. It forms the microprocessor complex by binding to the RNase III enzyme Drosha, which further converts long primary miRNAs (pri-miRNAs) into short hairpins called precursor miRNAs (pre-miRNAs). The processed hairpins finally are transported to the cytoplasm for further processing by Dicer into mature miRNAs. DGCR8 is also required for global gene regulation and silencing of embryonic stem cell self-renewal. Deletion of DGCR8 chromosomal location has been reported in the DiGeorge and velocardiofacial syndrome.
DGCR8, also known as DiGeorge syndrome critical region 8, DGCRK8 is the cofactor that interacts with drosha and forms a functional complex called the ‘‘Microprocessor” which is essential for microRNA (miRNA) maturation. DGCR8 contains an N-terminal region which is critical for nuclear localization and the C-terminal region stably interacts with the pri-miRNAs.
Disclaimer
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
General description
DGCR8 (DGCR8 microprocessor complex subunit) is a double-stranded RNA-binding protein mapped to the chromosome 22q11.2. It is composed of a WW domain and two double-stranded RNA-binding domains (dsRBDs).
DGCR8 contains an N-terminal region which is critical for nuclear localization and C-terminus which can directly and stably interact with the pri-mRNAs.
Physical form
Solution in 0.01 M phosphate buffered saline, pH 7.4, containing 15 mM sodium azide.
未找到合适的产品?
试试我们的产品选型工具.
存储类别
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
常规特殊物品
此项目有
A novel role for GSK3beta as a modulator of Drosha microprocessor activity and MicroRNA biogenesis
Fletcher CE, et al.
Nucleic Acids Research, 45(5) (2016)
DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal.
Nature Genetics, 39(3), 380-385 (2007)
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
Yeom KH, et al.
Nucleic Acids Research, 34(16) (2006)
Processing of primary microRNAs by the Microprocessor complex
Denli AM, et al.
Nature, 432(7014), 231-231 (2004)
Claire E Fletcher et al.
Nucleic acids research (2016-12-03)
Regulation of microRNA (miR) biogenesis is complex and stringently controlled. Here, we identify the kinase GSK3β as an important modulator of miR biogenesis at Microprocessor level. Repression of GSK3β activity reduces Drosha activity toward pri-miRs, leading to accumulation of unprocessed
相关内容
Instructions
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持