跳转至内容
Merck
CN

F5305

Sigma-Aldrich

Monoclonal Anti-Fibroblast Growth Factor-Basic antibody produced in mouse

clone 10060, purified immunoglobulin, lyophilized powder

别名:

Anti-FGF2

登录查看公司和协议定价


About This Item

MDL编号:
UNSPSC代码:
51111800
NACRES:
NA.41

生物来源

mouse

质量水平

偶联物

unconjugated

抗体形式

purified immunoglobulin

抗体产品类型

primary antibodies

克隆

10060, monoclonal

形式

lyophilized powder

种属反应性

human

技术

capture ELISA: 2-8 μg/mL

同位素/亚型

IgG2a

UniProt登记号

储存温度

−20°C

基因信息

human ... FGF2(2247)

正在寻找类似产品? 访问 产品对比指南

一般描述

Fibroblast Growth Factor Basic (also known as bFGF) is a pleotropic cytokine that that is a potent mitogenic factor. On binding to its cognate receptor tyrosine kinase, FGFR, bFGF is capable of activation of pathways such as MAPK and PI3K and produce cellular effects in varied cell types. Fibroblast Growth Factor-basic is repoted to induce proliferation of fibroblasts, differentiation, wound healing and regeneration, limb formation, tissue remodelling and angiogenesis. The role of bFGF in chondrocyte proliferation and repair has established the role of bFGF in maintaining cartilage and intervertebral disc homeostasis. Along with VEGF, bFGF is important in angiogenesis and tumorigenesis in response to inflammatory cytokines
Monoclonal Anti-Fibroblast Growth Factor Basic recognizes human Fibroblast Growth Factor Basic. It also recognizes bovine bFGF. It shows 0.2% cross-reactivity with bovine FGF acidic. It does not react with human FGF acidic, FGF-4, -6 or -7.

免疫原

purified, E. coli-derived recombinant human fibroblast growth factor basic.

应用

Monoclonal Anti-Fibroblast Growth Factor Basic may be used as capture antibody in ELISA at a recommended concentration range of 2-8 μg/ml.

外形

Lyophilized from a 0.2 μm filtered solution in phosphate buffered saline with 5% trehalose.

免责声明

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Not finding the right product?  

Try our 产品选型工具.

WGK

WGK 1

闪点(°F)

Not applicable

闪点(°C)

Not applicable

个人防护装备

Eyeshields, Gloves, type N95 (US)

法规信息

新产品

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Michael B Ellman et al.
Gene, 420(1), 82-89 (2008-06-21)
Two members of the fibroblast growth factor (FGF) family, basic FGF (bFGF) and FGF-18, have been implicated in the regulation of articular and intervertebral disc (IVD) cartilage homeostasis. Studies on bFGF from a variety of species have yielded contradictory results
Shintaro Kanayama et al.
Experimental eye research, 85(6), 772-781 (2007-10-02)
The aim of this study was to compare angiogenesis-induction capabilities of cultured corneal epithelial cells (CCE) and cultured oral mucosal epithelial cells (COE) in vitro, and identify candidate factors that induce corneal neovascularization after transplantation of COE sheets. Rabbit corneal
H Schmal et al.
Cytotherapy, 9(2), 184-193 (2007-04-25)
The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated. [EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro in monolayer. bFGF-dependent
Harris Pratsinis et al.
European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 16(11), 1858-1866 (2007-09-04)
Intervertebral disc (IVD) degeneration is frequently characterized by increased cell proliferation, probably as a tissue regenerative response. Although many growth factors and their receptors have been shown to be expressed normally in the disc, and generally to be over-expressed during
Brent E Bobick et al.
Journal of cellular physiology, 211(1), 233-243 (2006-12-15)
Fibroblast growth factors (FGFs) and their receptors play fundamental roles regulating growth, morphogenesis, and cartilage formation in embryonic limbs and facial primordia. However, the intracellular pathways that transduce FGF signals during the differentiation of pluripotent mesenchymal cells into chondrocytes are

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门