产品名称
MISSION® esiRNA, targeting human HNF1A
description
Powered by Eupheria Biotech
product line
MISSION®
form
lyophilized powder
esiRNA cDNA target sequence
TACCTGCAGCAGCACAACATCCCACAGCGGGAGGTGGTCGATACCACTGGCCTCAACCAGTCCCACCTGTCCCAACACCTCAACAAGGGCACTCCCATGAAGACGCAGAAGCGGGCCGCCCTGTACACCTGGTACGTCCGCAAGCAGCGAGAGGTGGCGCAGCAGTTCACCCATGCAGGGCAGGGAGGGCTGATTGAAGAGCCCACAGGTGATGAGCTACCAACCAAGAAGGGGCGGAGGAACCGTTTCAAGTGGGGCCCAGCATCCCAGCAGATCCTGTTCCAGGCCTATGAGAGGCAGAAGAACCCTAGCAAGGAGGAGCGAGAGACGCTAGTGGAGGAGTGCAATAGGGCGGAATGCATCCAGAGAGGGGTGTCCCCATCACAGGCACAGGGGCTGGGCTCCAACCTCGTCACGGAGGTGCGTGTCTACAACTGGTTTGCCAACC
Ensembl | human accession no.
NCBI accession no.
shipped in
ambient
storage temp.
−20°C
Quality Level
Gene Information
human ... HNF1A(6927), HNF1A(6927)
General description
MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
Legal Information
MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany
存储类别
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Oğuzhan Fatih Baltacı et al.
Turkish journal of medical sciences, 48(3), 620-627 (2018-06-20)
Background/aim: MODY3 associated with HNF1A is the most common form of MODY and is clinically misdiagnosed as type 1 diabetes due to similar clinical symptoms. This study aimed to analyze the role of HNF1A-regulated miRNAs as a biomarker in the
Ethan V Abel et al.
eLife, 7 (2018-08-04)
The biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a human PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC
Dusan Hrckulak et al.
Genes, 9(9) (2018-09-12)
T-cell factor 4 (TCF4), together with β-catenin coactivator, functions as the major transcriptional mediator of the canonical wingless/integrated (Wnt) signaling pathway in the intestinal epithelium. The pathway activity is essential for both intestinal homeostasis and tumorigenesis. To date, several mouse
Shipra Shukla et al.
Cancer cell, 32(6), 792-806 (2017-11-21)
Prostate cancer exhibits a lineage-specific dependence on androgen signaling. Castration resistance involves reactivation of androgen signaling or activation of alternative lineage programs to bypass androgen requirement. We describe an aberrant gastrointestinal-lineage transcriptome expressed in ∼5% of primary prostate cancer that
Weigong Zhao et al.
International journal of molecular sciences, 16(5), 11699-11712 (2015-05-27)
MicroRNAs (miRNAs) have been reported to have diverse biological roles in regulating many biological processes, including osteogenic differentiation. In the present study, we identified that miR-24 was a critical regulator during osteogenic differentiation. We found that overexpression of miR-24 significantly
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持