跳转至内容
Merck
CN

EHU146271

MISSION® esiRNA

targeting human HNF1A

登录 查看组织和合同定价。

选择尺寸


关于此项目

NACRES:
NA.51
UNSPSC Code:
41105324
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

产品名称

MISSION® esiRNA, targeting human HNF1A

description

Powered by Eupheria Biotech

product line

MISSION®

form

lyophilized powder

esiRNA cDNA target sequence

TACCTGCAGCAGCACAACATCCCACAGCGGGAGGTGGTCGATACCACTGGCCTCAACCAGTCCCACCTGTCCCAACACCTCAACAAGGGCACTCCCATGAAGACGCAGAAGCGGGCCGCCCTGTACACCTGGTACGTCCGCAAGCAGCGAGAGGTGGCGCAGCAGTTCACCCATGCAGGGCAGGGAGGGCTGATTGAAGAGCCCACAGGTGATGAGCTACCAACCAAGAAGGGGCGGAGGAACCGTTTCAAGTGGGGCCCAGCATCCCAGCAGATCCTGTTCCAGGCCTATGAGAGGCAGAAGAACCCTAGCAAGGAGGAGCGAGAGACGCTAGTGGAGGAGTGCAATAGGGCGGAATGCATCCAGAGAGGGGTGTCCCCATCACAGGCACAGGGGCTGGGCTCCAACCTCGTCACGGAGGTGCGTGTCTACAACTGGTTTGCCAACC

Ensembl | human accession no.

NCBI accession no.

shipped in

ambient

storage temp.

−20°C

Quality Level

Gene Information

General description

MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

存储类别

10 - Combustible liquids

flash_point_f

Not applicable

flash_point_c

Not applicable

法规信息

新产品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Oğuzhan Fatih Baltacı et al.
Turkish journal of medical sciences, 48(3), 620-627 (2018-06-20)
Background/aim: MODY3 associated with HNF1A is the most common form of MODY and is clinically misdiagnosed as type 1 diabetes due to similar clinical symptoms. This study aimed to analyze the role of HNF1A-regulated miRNAs as a biomarker in the
Ethan V Abel et al.
eLife, 7 (2018-08-04)
The biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a human PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC
Dusan Hrckulak et al.
Genes, 9(9) (2018-09-12)
T-cell factor 4 (TCF4), together with β-catenin coactivator, functions as the major transcriptional mediator of the canonical wingless/integrated (Wnt) signaling pathway in the intestinal epithelium. The pathway activity is essential for both intestinal homeostasis and tumorigenesis. To date, several mouse
Shipra Shukla et al.
Cancer cell, 32(6), 792-806 (2017-11-21)
Prostate cancer exhibits a lineage-specific dependence on androgen signaling. Castration resistance involves reactivation of androgen signaling or activation of alternative lineage programs to bypass androgen requirement. We describe an aberrant gastrointestinal-lineage transcriptome expressed in ∼5% of primary prostate cancer that
Weigong Zhao et al.
International journal of molecular sciences, 16(5), 11699-11712 (2015-05-27)
MicroRNAs (miRNAs) have been reported to have diverse biological roles in regulating many biological processes, including osteogenic differentiation. In the present study, we identified that miR-24 was a critical regulator during osteogenic differentiation. We found that overexpression of miR-24 significantly

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持