跳转至内容
Merck
CN

95348

Sigma-Aldrich

Abberior® STAR 470SX, NHS ester

for long Stokes STED and 2-color STED application

登录查看公司和协议定价

UNSPSC代码:
12352200

检测方案

≥80.0% (degree of coupling)

形式

solid

溶解性

DMF: 1 mg/mL, clear

荧光

λex 480 nm; λem 610-630 nm in PBS, pH 7.4

储存温度

−20°C

一般描述

Abberior STAR 470SX is the latest development of long-Stokes-Shift dyes for STED microscopy. The dye can be excited from 450 to 480nm. It can substitute dyes like Chromeo 494. For STED, a depletion wavelength ~750 nm is recommended. It is therefore well suited for 2-color STED imaging as implemented in the Leica TCS STED Ti:Sa microscope.

Abberior STAR 470SX is the dye of choice for long Stokes STED applications in the orange fluorescent regime. The dye is particularly designed and tested for 2-color STED microscopy in combination with our STAR 635 using a single STED wavelength. The dye is our recommendation for usage in the Leica TCS STED Ti:Sa 2-color system.

Key Features
  • Designed for STED microscopy at ~750 nm
  • Long Stokes′ shift (>130 nm) for 2-color applications
  • Tested in the Leica TCS STED Ti:Sa 2-color system

Absorption Maximum, λmax: 475 nm (MeOH),
477 nm (PBS, pH 7.4)
Extinction Coefficient, ε(λmax): 30′400 M-1cm-1 (MeOH),
22′700 M-1cm-1 (PBS, pH 7.4)
Correction Factor, CF260 = ε260/εmax: 0.69
Correction Factor, CF280 = ε280/max: 0.47
Fluorescence Maximum, λfl: 609 nm (MeOH),
627 nm (PBS, pH 7.4)
Recommended STED Wavelength, λSTED: 740 - 770 nm
Fluorescence Quantum Yield, η: 0.80 (EtOH)
Fluorescence Lifetime, τ: 3.9 (EtOH)

应用

Abberior STAR 470SX goat anti-rabbit antibody has been used for STED (stimulated emission depletion) microscopy in Caco-2 cells.

适用性

Designed and tested for fluorescent super-resolution microscopy

法律信息

6538 is a trademark of American Type Culture Collection
Chromeo is a trademark of Active Motif Chromeon GmbH
abberior is a registered trademark of Abberior GmbH

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

法规信息

新产品

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Thommie Karlsson et al.
PLoS pathogens, 8(10), e1002953-e1002953 (2012-10-17)
Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These
Marcus Dyba et al.
Nature biotechnology, 21(11), 1303-1304 (2003-10-21)
We report immunofluorescence imaging with a spatial resolution well beyond the diffraction limit. An axial resolution of approximately 50 nm, corresponding to 1/16 of the irradiation wavelength of 793 nm, is achieved by stimulated emission depletion through opposing lenses. We
T A Klar et al.
Optics letters, 24(14), 954-956 (2007-12-13)
We overcame the resolution limit of scanning far-field fluorescence microscopy by disabling the fluorescence from the outer part of the focal spot. Whereas a near-UV pulse generates a diffraction-limited distribution of excited molecules, a spatially offset pulse quenches the excited
Tim Grotjohann et al.
Nature, 478(7368), 204-208 (2011-09-13)
Lens-based optical microscopy failed to discern fluorescent features closer than 200 nm for decades, but the recent breaking of the diffraction resolution barrier by sequentially switching the fluorescence capability of adjacent features on and off is making nanoscale imaging routine. Reported
S W Hell et al.
Optics letters, 19(11), 780-782 (1994-06-01)
We propose a new type of scanning fluorescence microscope capable of resolving 35 nm in the far field. We overcome the diffraction resolution limit by employing stimulated emission to inhibit the fluorescence process in the outer regions of the excitation

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门