蒸汽压
0.0003 hPa ( 20 °C)
质量水平
检测方案
≥99.0% (GC)
形式
solid
自燃温度
630 °C (DIN 51794)
效能
1120 mg/kg LD50, oral (Rat)
>5000 mg/kg LD50, skin (Rabbit)
bp
302 °C/1013 hPa
mp
53-54 °C
转变温度
flash point 153 °C (DIN 51758)
溶解性
0.05 g/L
密度
1.16 g/cm3 at 20 °C
堆积密度
610 kg/m3
储存温度
no temp limit
InChI
1S/C12H11N/c1-3-7-11(8-4-1)13-12-9-5-2-6-10-12/h1-10,13H
InChI key
DMBHHRLKUKUOEG-UHFFFAOYSA-N
应用
- Design of hole transport materials: New small derivatives of 2,2′-bithiophene, possibly involving Diphenylamine as a building block, were rationally designed to improve the performance of perovskite solar cells, demonstrating Diphenylamine′s role in advancing photovoltaic technology (Adadi et al., 2024).
- High-efficiency hyperfluorescent OLEDs: Diphenylamine may be implicated in the development of hybridized local and charge transfer dendrimers, aimed at achieving near-unity exciton utilization in solution-processed OLEDs, highlighting its potential in high-performance electronic displays (Yin et al., 2024).
- Chemical detection technologies: A benzoxazole-triphenylamine conjugated fluorogenic probe was developed for the specific detection of sarin gas mimic diethylchlorophosphate, illustrating Diphenylamine′s utility in sensitive and specific chemical sensors (Sultana et al., 2024).
- Electrochemiluminescence emitters: Diphenylamine-based emitters were tailored for efficient electrochemiluminescence, employing tripropylamine as a co-reactant, contributing to the field of electrochemical sensors and displays (Morgan et al., 2023).
- Near-infrared fluorophores development: Research on chlorinated rylenecarboximide fluorophores, potentially involving Diphenylamine, focused on efficient near-infrared applications, which are critical for advanced imaging and diagnostic techniques (Wu et al., 2023).
分析说明
Assay (GC, area%): ≥ 99.0 % (a/a)
Melting range (lower value): ≥ 52 °C
Melting range (upper value): ≤ 55 °C
Identity (IR): passes test
Melting range (lower value): ≥ 52 °C
Melting range (upper value): ≤ 55 °C
Identity (IR): passes test
警示用语:
Danger
危险分类
Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - STOT RE 2
靶器官
Kidney,Liver,spleen
WGK
WGK 3
法规信息
危险化学品
实验方案
Straightforward HPTLC-MS analysis of lactose in dairy products (milk or yoghurt) using only protein crash, centrifugation and dilution as sample preparation.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门