质量水平
形式
solid
自燃温度
1112 °F
607 °C
技术
HPLC: suitable
pH值(酸碱度)
7.5-9.2 (20 °C, 50 g/L in H2O)
mp
58 °C
转变温度
flash point >250 °C
密度
1.42 g/cm3 at 20 °C
堆积密度
900 kg/m3
储存温度
2-30°C
SMILES字符串
O.O.O.[Na+].CC([O-])=O
InChI
1S/C2H4O2.Na.3H2O/c1-2(3)4;;;;/h1H3,(H,3,4);;3*1H2/q;+1;;;/p-1
InChI key
AYRVGWHSXIMRAB-UHFFFAOYSA-M
正在寻找类似产品? 访问 产品对比指南
相关类别
应用
- 3D Printing of Supercooled Liquids: Sodium acetate trihydrate is used in 3D printing of supercooled liquids. This research involves modeling and verifying the behavior of supercooled sodium acetate trihydrate in additive manufacturing processes. The study demonstrates its potential in creating complex structures and highlights the thermal properties essential for maintaining supercooling during the printing process. This application is significant for chemists working on advanced manufacturing techniques and material science (Brillinger, Additive Manufacturing, 2023).
- Thermal Energy Storage: Sodium acetate trihydrate is widely used in thermal energy storage systems due to its favorable phase change properties. Studies have shown its effectiveness in storing and releasing thermal energy, which is crucial for applications in solar heating and building energy efficiency. The research also explores the impact of adding water to sodium acetate trihydrate to enhance its thermal stability and latent heat capacity (Beaupere et al., Applied Sciences, 2021).
- Electrical Nucleation of Supercooled Phase Change Composites: Sodium acetate trihydrate is used in the preparation and performance analysis of controllably-triggered electrodes for the electrical nucleation of supercooled phase change composites. This study focuses on improving the efficiency and reliability of phase change materials for thermal management systems. The findings are crucial for developing advanced thermal storage solutions in various industrial applications (Chen et al., SSRN Electronic Journal, 2022).
- Residual Solidification Duration Measurements: Experimental measurements of the residual solidification duration of supercooled sodium acetate trihydrate are conducted to understand its phase change dynamics. This research provides insights into the kinetics of solidification and helps optimize the material′s use in thermal energy storage applications. The study is vital for chemists working on phase change materials and energy storage systems (Beaupere et al., International Journal of Thermal Sciences, 2020).
- Composite Phase Change Materials: Sodium acetate trihydrate is combined with pyrolytic carbon residue to create composite phase change materials. This research aims to improve the thermal cycling performance and reduce the undercooling and phase separation issues commonly associated with sodium acetate trihydrate. The study demonstrates the material′s stability and high latent heat value, making it suitable for long-term thermal energy storage applications (Yuan, Journal of Physics: Conference Series, 2022).
其他说明
乙酸激酶的酶底物(酶代码 EC 2.7.2.1)
法律信息
LiChropur is a trademark of Merck KGaA, Darmstadt, Germany
相关产品
产品编号
说明
价格
储存分类代码
11 - Combustible Solids
WGK
WGK 1
闪点(°F)
Not applicable
闪点(°C)
Not applicable
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门