推荐产品
产品名称
Calmodulin Kinase IINtide, Myristoylated, The myristoylated form of CaMK IINtide.
质量水平
方案
≥95% (HPLC)
表单
solid
制造商/商品名称
Calbiochem®
储存条件
OK to freeze
desiccated (hygroscopic)
颜色
white
溶解性
DMSO: 5 mg/mL
运输
ambient
储存温度
−20°C
一般描述
The myristoylated form of CaMK IINtide (Cat. No. 208920), a potent, specific inhibitor of Ca2+/Calmodulin kinase II (CaMK II) (IC50 = 50 nM for total and Ca2+-independent CaMK II activity). The peptide sequence corresponds to the inhibitory domain of the CaMK II inhibitory protein, CaMK IIN. Exhibits inhibitory activity across converged species, including rat brain, goldfish brain, and Drosophila (IC50 = 100-400 nM). Shown to completely inhibit the phosphorylation of GluR1 fusion protein at a concentration of 1 µM. Does not inhibit CaMK I, CaMK IV, CaMKK, PKA, or PKC. The peptide has been modified at the amino terminal lysine with the addition of three glycine residues and myristoylated to improve cell-permeability.
生化/生理作用
Cell permeable: yes
Primary Target
Calmodulin-Dependent Protein Kinase (CaM Kinase)-2
Calmodulin-Dependent Protein Kinase (CaM Kinase)-2
Product does not compete with ATP.
Reversible: no
Target IC50: 50 nM against cam Kinase-2
包装
Packaged under inert gas
警告
Toxicity: Standard Handling (A)
序列
Myr-N-Gly-Gly-Gly-Lys-Arg-Pro-Pro-Lys-Leu-Gly-Gln-Ile-Gly-Arg-Ala-Lys-Arg-Val-Val-Ile-Glu-Asp-Asp-Arg-Ile-Asp-Asp-Val-Leu-Lys-OH
外形
Supplied as a trifluoroacetate salt.
重悬
Following reconstitution aliquot and freeze (-20°C). Stock solutions are stable for up to 6 months at-20°C.
其他说明
Sodering, T.R., et al. 2001. J. Biol. Chem.276, 3719.
Chang, B.H., et al. 1998. Proc. Natl. Acad. Sci. USA95, 10890.
Pereda, A.E., et al. 1998. Proc. Natl. Acad. Sci. USA95, 13272.
Chang, B.H., et al. 1998. Proc. Natl. Acad. Sci. USA95, 10890.
Pereda, A.E., et al. 1998. Proc. Natl. Acad. Sci. USA95, 13272.
法律信息
CALBIOCHEM is a registered trademark of Merck KGaA, Darmstadt, Germany
储存分类代码
11 - Combustible Solids
WGK
WGK 1
闪点(°F)
Not applicable
闪点(°C)
Not applicable
Synaptic memory survives molecular turnover.
Lee, et al.
Proceedings of the National Academy of Sciences of the USA, 119, e2211572119-e2211572119 (2023)
Wucheng Tao et al.
eLife, 10 (2021-12-16)
Long-term potentiation (LTP) is arguably the most compelling cellular model for learning and memory. While the mechanisms underlying the induction of LTP ('learning') are well understood, the maintenance of LTP ('memory') has remained contentious over the last 20 years. Here
Xiumin Chen et al.
Proceedings of the National Academy of Sciences of the United States of America, 121(26), e2402783121-e2402783121 (2024-06-18)
Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation)
Rabia Anjum et al.
PloS one, 19(7), e0301063-e0301063 (2024-07-12)
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门