跳转至内容
Merck
CN

GF17478445

foil, 25x25mm, thickness 0.50mm, as rolled, 99.99+%

别名:

登录查看公司和协议定价


About This Item

线性分子式:
Pd
CAS号:
分子量:
106.42
MDL编号:
UNSPSC代码:
12141733
PubChem化学物质编号:
NACRES:
NA.23

检测方案

99.99%

形式

foil

制造商/商品名称

Goodfellow 174-784-45

电阻率

9.96 μΩ-cm, 20°C

尺寸 × 厚度

25 x 25 mm × 0.50 mm

bp

2970 °C (lit.)

mp

1554 °C (lit.)

密度

12.02 g/cm3 (lit.)

SMILES字符串

[Pd]

InChI

1S/Pd

InChI key

KDLHZDBZIXYQEI-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

一般描述

For updated SDS information please visit www.goodfellow.com.

法律信息

Product of Goodfellow

储存分类代码

13 - Non Combustible Solids

WGK

nwg

闪点(°F)

Not applicable

闪点(°C)

Not applicable

法规信息

新产品

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Qing-An Chen et al.
Chemical Society reviews, 42(2), 497-511 (2012-11-10)
The transition metal catalyzed asymmetric hydrogenation of unsaturated compounds arguably presents one of the most attractive methods for the synthesis of chiral compounds. Over the last few decades, Pd has gradually grown up as a new and popular metal catalyst
Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications.
Richard I McDonald et al.
Chemical reviews, 111(4), 2981-3019 (2011-03-25)
Xiao-Feng Wu et al.
ChemSusChem, 6(2), 229-241 (2013-01-12)
Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate
Pazhamalai Anbarasan et al.
Chemical Society reviews, 40(10), 5049-5067 (2011-04-30)
The palladium-catalyzed cyanation of Ar-X (X = I, Br, Cl, OTf, and H) allows for an efficient access towards benzonitriles. After its discovery in 1973 and following significant improvements in recent decades, this methodology has become nowadays the most popular
Stephan Enthaler et al.
Chemical Society reviews, 40(10), 4912-4924 (2011-06-07)
The formation of oxygen-carbon bonds is one of the fundamental transformations in organic synthesis. In this regard the application of palladium-based catalysts has been extensively studied during recent years. Nowadays it is an established methodology and the success has been

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门