跳转至内容
Merck
CN

938904

Sigma-Aldrich

TissueFab® Discrete GelMA

new

300 bloom, 50% degree of substitution

别名:

GeIMA, Gelatin Methacrylate, Gelatin methacrylamide

登录查看公司和协议定价


About This Item

线性分子式:
(C32H48N9O11)n
CAS号:
UNSPSC代码:
12352202

质量水平

描述

Application: 3D bioprinting, tissue engineering

形式

(powder or chunk(s) or fibers)

颜色

, white to light brown

储存温度

−20°C

一般描述

Gelatin methacryloyl, also known as gelatin methacrylate or GelMA, is a methacrylate-functionalized gelatin biomaterial. The gelatin amine groups are chemically modified with methacrylate groups, which when combined with light and a photoinitiator, can be be photopolymerized to form a hydrogel with a three-dimension network that closely mimices the native extracellular matrix (ECM). GelMA is often used as a scaffold for cell culture and tissue regeneration, as it provides a supportive environment for cell attachment, proliferation, and differentation. Its properties, such as mechanical strength, degradation rate, and gelation behavior, can be adjusted by modifying the degree of methacrylation and crosslinking density.

Many GelMAs currently available have a high degree of variation and inconsistency. To address this, the TissueFab(R) Discrete GelMAs have been developed to achieve a specific degree of methacrylation with low batch to batch variability.

应用

  • Tissue engineering - including bone tissue, cartilage tissue, epidermal tissue, and cardiac tissue
  • Regenerative medicine - including injectable tissue constructs and endothelial cell morphogenesis
  • Drug and cell delivery - in the form of microspheres and hydrogels
  • Surface coatings - of medical devices and implants in order to improve biocompatibility and release therapuetic cargos

特点和优势

  • Specific degree of methacrylation - a narrow peak of methacrylation allows for better reproducibility, low batch to batch variability, for improved consistency of gel properties and cell behavior.
  • Biocompatibility - GelMA contains RGD sequences, found in collagen and other natural ECM proteins, which promote cell adhesion, proliferation, differentiation, and maturation of a variety of cell types.
  • Biodegradability - GelMA contains matrix metalloproteinase (MMP) degradable sites that can be recognized and enzymatically degraded by cells. This allows the encapsulated cells to degrade and remodel the GelMA matrix, and repopulate with their own cells and tissues, a major goal for tissue engineering and regenerative medicine.
  • Tunability - The TissueFab(R) Discrete GelMAs are available in a variety of degrees of substitution which ultimately impact the hydrogel stiffness and mechanical properties and can be used to recapitulate and accomodate different native tissues.
  • Bioprintability - The TissueFab(R) Discrete GelMAs are widely used in the field of 3D bioprinting due to their unique gelation properties and the ability to print via extrusion and other methods to create intricate cell-encapsulated 3D structures with high cell viability.

法律信息

TISSUEFAB is a registered trademark of Merck KGaA, Darmstadt, Germany

储存分类代码

11 - Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

法规信息

新产品

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Facile one-step micropatterning using photodegradable methacrylated gelatin hydrogels for improved cardiomyocyte organization and alignment.
Tsang K, et al.
Advances in Functional Materials, 25(6), 977-986 (2015)
Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting.
Masaeli, et al.
Biofabrication, 12, 25006-25006 (2020)
Photocrosslinkable gelatin hydrogel for epidermal tissue engineering.
Zhao X, et al.
Advanced Helathcare Materials (2015)
Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels.
Nikkhah M, Eshak N, Zorlutuna P, et al.
Biomaterials, 33(35), 9009-9018 (2012)
Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells.
Kang H, Shih YR, Hwang Y, et al.
Acta Biomaterialia, 10(12), 4961-4170 (2014)

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门