跳转至内容
Merck
CN

935484

三氯化钌

anhydrous, powder, 99.99% trace metals basis

登录查看公司和协议定价

别名:
Ruthenium chloride, Ruthenium trichloride, Trichlororuthenium
线性分子式:
RuCl3
CAS号:
分子量:
207.43
MDL编号:
UNSPSC代码:
12352302
NACRES:
NA.21

质量水平

检测方案

40-50% Ru basis (gravimetric)
99.99% trace metals basis

形式

powder

specific gravity measuring range

6.97 g/mL

杂质

≤150 ppm (trace metals analysis)

颜色

dark gray to black

pH值(酸碱度)

1-2

溶解性

water: soluble

密度

3.11 g/mL at 25 °C (lit.)

SMILES字符串

Cl[Ru](Cl)Cl

InChI

1S/3ClH.Ru/h3*1H;/q;;;+3/p-3

InChI key

YBCAZPLXEGKKFM-UHFFFAOYSA-K

正在寻找类似产品? 访问 产品对比指南

一般描述

Ruthenium chloride is a dark brown or black solid often used as a powder. It is slightly soluble in organic solvents. Typically, ruthenium metal powder and chlorine are heated to create anhydrous ruthenium(III) chloride.

应用

Ruthenium chloride is most used as a precursor for the synthesis of ruthenium complexes. One common application of ruthenium trichloride is in the synthesis of ruthenium nanoparticles, which are used as catalysts or composited with other materials and used as co-catalysts for both oxygen and hydrogen evolution reactions Researchers have used our ruthenium chloride to produce high-quality, catalytically active ruthenium nanoparticles and ruthenium oxide nanoparticles. In addition, common application of ruthenium chloride anhydrous is as a precursor for single-atom catalysts. For example, scientists have used ruthenium chloride for the synthesis of ruthenium single-atom-doped ZrO2 particles to catalyze nitrogen fixation and for the synthesis of ruthenium single-atom-doped MXenes to catalyze hydrogen evolution. A third common application of ruthenium chloride hydrate is in the synthesis of metal alloys, like PtRuIr, or PtRuFe, which are investigated for electrocatalysis, usually the oxidation of simple organics like methanol or formic acid.

警示用语:

Danger

危险声明

危险分类

Acute Tox. 4 Oral - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

法规信息

新产品

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Javeed Mahmood et al.
Nature nanotechnology, 12(5), 441-446 (2017-02-14)
The hydrogen evolution reaction (HER) is a crucial step in electrochemical water splitting and demands an efficient, durable and cheap catalyst if it is to succeed in real applications. For an energy-efficient HER, a catalyst must be able to trigger
Youngmin Lee et al.
The journal of physical chemistry letters, 3(3), 399-404 (2012-02-02)
The activities of the oxygen evolution reaction (OER) on iridium-oxide- and ruthenium-oxide-based catalysts are among the highest known to date. However, the OER activities of thermodynamically stable rutile iridium oxide (r-IrO2) and rutile iridium oxide (r-RuO2), normalized to catalyst mass
Vinoth Ramalingam et al.
Advanced materials (Deerfield Beach, Fla.), 31(48), e1903841-e1903841 (2019-10-18)
A titanium carbide (Ti3 C2 Tx ) MXene is employed as an efficient solid support to host a nitrogen (N) and sulfur (S) coordinated ruthenium single atom (RuSA ) catalyst, which displays superior activity toward the hydrogen evolution reaction (HER).
Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction
Tao H, et al.
Chem, 5, 204-214 (2019)
Fabing Su et al.
Journal of the American Chemical Society, 129(46), 14213-14223 (2007-11-02)
We report here a thermal reduction method for preparing Ru catalysts supported on a carbon substrate. Mesoporous SBA-15 silica, surface-carbon-coated SBA-15, templated mesoporous carbon, activated carbon, and carbon black with different pore structures and compositions were employed as catalyst supports

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门