跳转至内容
Merck
CN

934682

Sigma-Aldrich

NMC532

greener alternative

electrode sheet, aluminum substrate, size 5 in. × 10 in.

别名:

Lithium nickel manganese cobalt oxide, NMC 532 cathode

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
LiNi0.5Mn0.3Co0.2O2
分子量:
96.55
UNSPSC代码:
26111700
NACRES:
NA.21

物料

aluminum substrate (current collector)

质量水平

等级

battery grade

描述

3.75 V vs. Li/Li+

方案

≥98% (active material characteristic)

组成

Active material loading 12.1 mg/cm2 ± 5%

环保替代产品特性

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

尺寸

16 μm , aluminum current collector
5 in. × 10 in.
70 μm , excluding current collector

平均零件尺寸

8-12 μm (active material characteristic)

容量

165 mAh/g±5 % (Nominal discharge)
2.0 mAh/cm2±5 % (Areal)

应用

battery manufacturing

环保替代产品分类

一般描述

NMC532, electrode sheet, aluminum substrate, is a ready-to-use cathode for lithium-ion battery research. NMC532 is a quaternary lithium metal oxide, with the formula LiNi0.5Mn0.3Co0.2O2, and is a state-of-the-art cathode material for lithium-ion batteries that offers high energy density and cycle lifetimes. The composition of our cathode film is 90% active material, 5% PVDF binder, 5% Carbon black.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

应用

The main application of our NMC532 electrode sheet is as a cathode for next-generation lithium-ion batteries (LIBs). The 532 refers to the ratio of metals in the active material that combine to give the high performance: nickel provides high energy density while the manganese and cobalt help to stabilize the spinel crystal structure to extend the cycle lifetime at moderate-high operating temperatures. As a result, our cathode sheet achieves high capacity (>155 mAh/g gravimetric capacity, 2.0 mAh/cm2 areal capacity) and long cycle lifetimes, while offering a high nominal voltage of 3.75 V vs. Li/Li+. NMC532 is the optimal composition to maintain the good thermal stability of low-nickel compositions (e.g. NMC111), while also having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The recommended charge rate for our sheet is 1 °C and discharge rate up to 5 °C.

象形图

Health hazardExclamation mark

警示用语:

Warning

危险声明

危险分类

Carc. 2 - Skin Sens. 1

储存分类代码

13 - Non Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

法规信息

新产品

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Arumugam Manthiram
ACS central science, 3(10), 1063-1069 (2017-11-07)
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters-energy, power
Peiyu Hou et al.
Small (Weinheim an der Bergstrasse, Germany), 13(45), 1701802-1701802 (2017-10-05)
The urgent prerequisites of high energy-density and superior electrochemical properties have been the main inspiration for the advancement of cathode materials in lithium-ion batteries (LIBs) in the last two decades. Nickel-rich layered transition-metal oxides with large reversible capacity as well
Seong-Min Bak et al.
ACS applied materials & interfaces, 6(24), 22594-22601 (2014-11-25)
Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门