产品名称
1,1,2,2-Tetrafluoroethyl 2,2,2-trifluoroethyl ether, ≥99.5%, anhydrous, acid <=100 ppm, battery grade
Quality Level
SMILES string
FC(F)(F)COC(F)(F)C(F)F
InChI
1S/C4H3F7O/c5-2(6)4(10,11)12-1-3(7,8)9/h2H,1H2
InChI key
CWIFAKBLLXGZIC-UHFFFAOYSA-N
grade
battery grade
assay
≥99.5%
form
liquid
impurities
≤100 ppm acid (HF)
≤250 ppm H2O
non-volatile residue (NVR)
≤10 ppm
bp
56 °C
mp
-91 °C (lit.)
density
1.49 g/mL
application(s)
battery manufacturing
Application
Battery-grade 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE) is a versatile co-solvent and additive for various battery systems. In lithium-metal batteries, TFTFE helps to suppress dendrites without raising the interfacial impedance. It also supports the stable cycling of NMC and lithium metal phosphate cathodes by forming a highly fluorinated interphase, which inhibits oxidation and transition metal dissolution. Because of its stability and low viscosity, TFTFE is commonly added in localized high-concentration electrolytes (LHCE) as a diluent and flame-retardant. In lithium-sulfur batteries, TFTFE plays a key role as both a polysulfide-restraining solvent and a film-forming agent, addressing the polysulfide shuttle (PSS) effect and improving battery performance. Additionally, TFTFE plays a critical role in cell systems with solvate ionic liquids (SIL) as an ionic conduction-enhancing ingredient, particularly for high-rate cycle environments. Our high-purity, anhydrous TFTFE is an ideal battery-grade additive for advanced battery technology.
General description
1,1,2,2-Tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE) is a fluorinated ether that finds extensive use as an electrolyte solvent and diluent in various battery technologies. TFTFE has a low viscosity, low freezing point (-94 °C lit.), low dielectric constant (~6.7), and high electrochemical stability, making it an ideal candidate for use in lithium-ion batteries, lithium-sulfur batteries, and other battery systems. TFTFE is miscible with many polar organic solvents, including carbonates typically used in battery electrolytes. With a minimum purity level of 99% and free from acid impurities, our TFTFE is a reliable and safe solution for critical battery applications.
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2
存储类别
10 - Combustible liquids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Synthesis and electrochemical properties of partially fluorinated ether solvents for lithiumsingle bondsulfur battery electrolytes
Yue Zheng
Journal of Power Sources, 401, 271-277 (2018)
Solvate ionic liquid electrolyte with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether as a support solvent for advanced lithium?sulfur batteries
Lu, Hai, et al.
Royal Society of Chemistry Advances, 6, 18186-18190 (2016)
Jun-Fan Ding et al.
Angewandte Chemie (International ed. in English), 60(20), 11442-11447 (2021-03-04)
Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of
Xiulin Fan et al.
Nature nanotechnology, 13(8), 715-722 (2018-07-18)
Rechargeable Li-metal batteries using high-voltage cathodes can deliver the highest possible energy densities among all electrochemistries. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Here, we
Application of Partially Fluorinated Ether for Improving Performance of Lithium/Sulfur Batteries
Lu, Hai, et al.
Journal of the Electrochemical Society, 162, A1460-A1460 (2015)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持