推荐产品
等级
battery grade
质量水平
方案
≥99.9% trace metals basis
环保替代产品特性
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
mp
618 °C (lit.)
环保替代产品分类
SMILES字符串
[Li+].[Li+].[O-]C([O-])=O
InChI
1S/CH2O3.2Li/c2-1(3)4;;/h(H2,2,3,4);;/q;2*+1/p-2
InChI key
XGZVUEUWXADBQD-UHFFFAOYSA-L
正在寻找类似产品? 访问 产品对比指南
一般描述
Lithium carbonate is a white, crystalline salt that only exists in the anhydrous form. The salt is soluble in water, but poorly, and it is insoluble in alcohols and acetone. The solubility of lithium carbonate in water decreases with increasing temperature, which is unusual for a salt. Its solubility increases with partial pressure of carbon dioxide, which drives the equilibrium towards the more soluble metastable bicarbonate. These properties of its solubility are often exploited in its purification.
Lithium carbonate is an important industrial chemical, primarily as a precursor to lithium fluoride and lithium hydroxide, key precursors for compounds used in lithium-ion batteries. It is also used directly in ceramic glazes, glasses, and fireworks, among other industrial applications.
Lithium carbonate is produced in several ways, usually involving extracting lithium from the earth. One common extraction method involves mining and acid leaching from spodumene ores (lithium aluminum silicate). The ore is concentrated, baked at high temperature to change the crystal structure to a digestible phase, then digested with sulfuric acid to form a concentrate. Reacting the lithium sulfate concentrate with sodium carbonate forms the raw lithium carbonate that is further purified and dried. Another method involves processing and purifying underwater brine, which is pumped to the surface and dried by passive evaporation. The resulting salts are converted to lithium carbonate and subsequently purified.
Lithium carbonate is an important industrial chemical, primarily as a precursor to lithium fluoride and lithium hydroxide, key precursors for compounds used in lithium-ion batteries. It is also used directly in ceramic glazes, glasses, and fireworks, among other industrial applications.
Lithium carbonate is produced in several ways, usually involving extracting lithium from the earth. One common extraction method involves mining and acid leaching from spodumene ores (lithium aluminum silicate). The ore is concentrated, baked at high temperature to change the crystal structure to a digestible phase, then digested with sulfuric acid to form a concentrate. Reacting the lithium sulfate concentrate with sodium carbonate forms the raw lithium carbonate that is further purified and dried. Another method involves processing and purifying underwater brine, which is pumped to the surface and dried by passive evaporation. The resulting salts are converted to lithium carbonate and subsequently purified.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.
应用
Lithium carbonate is used in the preparation of many lithium compounds, most notably lithium iron phosphate (LiFePO4). A common synthetic strategy for synthesizing lithium metal oxides involves thermally decomposing lithium carbonate, which serves effectively as a convenient, in-situ source of lithium oxide by cleanly evolving carbon dioxide. Typically, lithium carbonate is mixed or ball-milled with other metal carbonates, metal oxides, and phosphates. Then the mixture is heated at a low temperature (e.g. 350 °C) and subsequently at a higher temperature (e.g. 600 °C) to complete the reaction and improve the crystallinity of the product. Researchers have used this technique to prepare exciting new materials for lithium-ion batteries, like Li2Ru1-ySnyO3 as a cathode material and Li7La3Zr2O12 (LLZ) as a solid-state electrolyte.
包装
100 g in poly bottle
500 g in poly bottle
500 g in poly bottle
警示用语:
Warning
危险声明
危险分类
Acute Tox. 4 Oral - Eye Irrit. 2
储存分类代码
13 - Non Combustible Solids
WGK
WGK 1
闪点(°F)
Not applicable
闪点(°C)
Not applicable
Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention
ACS Applied Materials & Interfaces, 8, 10617?10626-10617?10626 (2016)
Nature, 458(7235), 190-193 (2009-03-13)
The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that
Nature materials, 12(9), 827-835 (2013-07-16)
Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门