质量水平
描述
Degree of functionalization: 30-40%
形式
powder
薄层电阻
15.6m Ω/sq (25 mum after curing at 150 Celsius for 5 min on glass)
颜色
white to off-white
适用性
conforms to structure for NMR
储存温度
2-8°C
SMILES字符串
CO[C@H]1[C@@H](O)[C@H](O)[C@H](O/C(C=O)=C\C([O-])=O)O[C@@H]1C([O-])=O.OC2[C@H](OC(O)C=O)[C@@H](C([O-])=O)O[C@@H](OC)[C@H]2O
正在寻找类似产品? 访问 产品对比指南
应用
Alginate is an anionic polysaccharide that is widely used in pharmaceutical and biomedical applications due to its non-animal origin, low toxicity, biocompatibility, and biodegradability[1]. Alginate hydrogels are commonly used to fabricate tissue engineering scaffolds[3], bioinks for 3D bioprinting[2][4], and nanocarriers for drug &gene;delivery.
Alginate is commonly crosslinked into a hydrogel via ionic-crosslinking with divalent cations (e.g., Ca2+). To prevent matrix degradation, alginate can be functionalized with reactive groups that can be chemically crosslinked, such as aldehydes.[5] Aldehyde- functionalized alginate can be used to prepare hydrogels by reaction with amine groups, such as gelatin through Schiff-base reaction to form a chemical hydrogel. This material can be used in a variety of biomedical applications such as the delivery of drugs, cells, or biomolecules in different tissues, wound healing, and muscle and bone tissue engineering. [6]
Alginate is commonly crosslinked into a hydrogel via ionic-crosslinking with divalent cations (e.g., Ca2+). To prevent matrix degradation, alginate can be functionalized with reactive groups that can be chemically crosslinked, such as aldehydes.[5] Aldehyde- functionalized alginate can be used to prepare hydrogels by reaction with amine groups, such as gelatin through Schiff-base reaction to form a chemical hydrogel. This material can be used in a variety of biomedical applications such as the delivery of drugs, cells, or biomolecules in different tissues, wound healing, and muscle and bone tissue engineering. [6]
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
法规信息
新产品
Biomaterials, 26(18), 3941-3951 (2005-01-01)
The injectable polymer scaffolds which are biocompatible and biodegradable are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural proteins and polysaccharides are ideal scaffolds for tissue engineering since they resemble the extracellular matrices of the tissue
Carbohydrate research, 340(7), 1425-1429 (2005-04-28)
Periodate oxidation of sodium alginate in aqueous solution as well as a dispersion in 1:1 ethanol-water was examined. The oxidation proceeded smoothly in both media, and the kinetics of oxidation was surprisingly similar. Polymer cleavage was observed in both media
Determination of Degree of Substitution of Formyl Groups in Polyaldehyde Dextran by the Hydroxylamine Hydrochloride Method
Pharmaceutical Research, 8, 400?402-400?402 (1991)
Biomacromolecules, 19(1), 3-21 (2017-11-28)
Oxidized alginate (OA)-based hydrogels have drawn considerable attention as biodegradable materials for tissue engineering applications. OA possesses a faster degradation rate and contains more reactive groups compared to native alginate. This review summarizes the research publications reporting the development of
Controlling alginate oxidation conditions for making alginate-gelatin hydrogels
Carbohydrate Polymers, 198, 509-517 (2018)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门