跳转至内容
Merck
CN

919624

Sigma-Aldrich

TissueFab® bioink 

(GelHA)ma -Vis/405 nm

别名:

Bioink, HAMA, Hyaluronic Acid methacryloyl, Hyaluronic acid, Hyaluronic acid methacrylamide, Hyaluronic acid methacrylate, Sodium hyaluronate

登录查看公司和协议定价


About This Item

UNSPSC代码:
12352201
NACRES:
NA.23

质量水平

描述

suitable for 3D bioprinting applications

无菌性

sterile-filtered

表单

viscous liquid (gel)

杂质

<5 CFU/g Bioburden (Fungal)
<5 CFU/g Bioburden (Total Aerobic)

颜色

colorless to pale yellow

粒径

0.2 μm

pH值(酸碱度)

6.5-7.5

应用

3D bioprinting

正在寻找类似产品? 访问 产品对比指南

应用

TissueFab® - HAMA-Vis bioink is a hyaluronic acid methacrylate and GelMA based bioink for 3D bioprinting applications. The formulation is optimized for 3D bioprinting of tissues and constructs using extrusion based 3D bioprinters, and can be can be used to bioprint cell-laden hydrogels in desired shape without any supporting material. The crosslinking of printed structures can be done in one step using visible light for further culture and maturation of cells for tissue engineering and regenerative medicine applications.

包装

10 mL in glass bottle

法律信息

TISSUEFAB is a registered trademark of Merck KGaA, Darmstadt, Germany

储存分类代码

10 - Combustible liquids

WGK

WGK 3

法规信息

含少量动物源组分生物产品

从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Sudhir Khetan et al.
Cryobiology, 90, 83-88 (2019-08-06)
While significant progress has been made in directing the behavior of cells encapsulated within three-dimensional (3D) covalently crosslinked hydrogels, the capacity of these materials to support in situ cryopreservation of cells directly within the gels has not been assessed. Here
Michelle T Poldervaart et al.
PloS one, 12(6), e0177628-e0177628 (2017-06-07)
In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring

商品

生物墨水可3D生物打印形成功能组织结构,从而应用于药物筛选、疾病建模和体外移植。针对特定组织工程应用选择生物墨水和打印方法。

Bioinks enable 3D bioprinting of tissue constructs for drug screening and transplantation; select suitable bioinks for specific tissue engineering.

Learn how 3D bioprinting is revolutionizing drug discovery with highly-controllable cell co-culture, printable biomaterials, and its potential to simulate tissues and organs. This review paper also compares 3D bioprinting to other advanced biomimetic techniques such as organoids and organ chips.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门