914088
N6-((2-Azidoethoxy)carbonyl)-L-lysine hydrochloride
≥95%
别名:
(S)-2-amino-6-((2-azidoethoxy)carbonylamino)hexanoic acid hydrochloride, Clickable amino acid for bioconjugation, H-L-Lys(EO-N3)-OH HCl, Lysine-azide, UAA crosslinker
登录查看公司和协议定价
所有图片(1)
About This Item
经验公式(希尔记法):
C9H17N5O4 · xHCl
CAS号:
分子量:
259.26 (free base basis)
MDL编号:
UNSPSC代码:
12352209
推荐产品
质量水平
方案
≥95%
表单
powder
储存温度
−20°C
SMILES字符串
[N+](=[N-])=NCCOC(=O)NCCCC[C@H](N)C(=O)O.C
InChI
1S/C9H17N5O4.CH4/c10-7(8(15)16)3-1-2-4-12-9(17)18-6-5-13-14-11;/h7H,1-6,10H2,(H,12,17)(H,15,16);1H4/t7-;/m0./s1
InChI key
LQERWAMRZNEGIE-FJXQXJEOSA-N
应用
N6-((2-Azidoethoxy)carbonyl)-L-lysine hydrochloride is a clickable amino acid derivative for site-specific incorporation into recombinant proteins or synthesis of chemical probes and tools for biological applications. This non-canonical lysine possesses an azide for bioorthogonal reaction with alkynes.
其他说明
Construction of bacterial cells with an active transport system for unnatural amino acids
Semisynthesis of an Active Enzyme by Quantitative Click Ligation
A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast
An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes
Semisynthesis of an Active Enzyme by Quantitative Click Ligation
A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast
An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes
警示用语:
Danger
危险声明
危险分类
Self-react. C
储存分类代码
5.2 - Organic peroxides and self-reacting hazardous materials
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
法规信息
新产品
Ralph E Kleiner et al.
Journal of the American Chemical Society, 135(34), 12520-12523 (2013-08-13)
Microtubules are hollow tube-like biological polymers required for transport in diverse cellular contexts and are important drug targets. Microtubule function depends on interactions with associated proteins and post-translational modifications at specific sites located on its interior and exterior surfaces. However
Christian Kofoed et al.
Bioconjugate chemistry, 30(4), 1169-1174 (2019-03-19)
The incorporation of clickable noncanonical amino acids (ncAAs) has proven to an invaluable tool in chemical biology and protein science research. Nevertheless, the number of examples in which the method is used for preparative purposes is extremely limited. We report
Sigrid Milles et al.
Journal of the American Chemical Society, 134(11), 5187-5195 (2012-02-24)
Single-molecule methods have matured into central tools for studies in biology. Foerster resonance energy transfer (FRET) techniques, in particular, have been widely applied to study biomolecular structure and dynamics. The major bottleneck for a facile and general application of these
Duy P Nguyen et al.
Journal of the American Chemical Society, 131(25), 8720-8721 (2009-06-12)
We demonstrate that an orthogonal Methanosarcina barkeri MS pyrrolysyl-tRNA synthetase/tRNA(CUA) pair directs the efficient, site-specific incorporation of N6-[(2-propynyloxy)carbonyl]-L-lysine, containing a carbon-carbon triple bond, and N6-[(2-azidoethoxy)carbonyl]-L-lysine, containing an azido group, into recombinant proteins in Escherichia coli. Proteins containing the alkyne functional
Abhishek Chatterjee et al.
Biochemistry, 52(10), 1828-1837 (2013-02-06)
To site-specifically incorporate an unnatural amino acid (UAA) into target proteins in Escherichia coli, we use a suppressor plasmid that provides an engineered suppressor tRNA and an aminoacyl-tRNA synthetase (aaRS) specific for the UAA of interest. The continuous drive to
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门