推荐产品
描述
Electrochemical activity: see attached CV result
质量水平
表单
solid
环保替代产品特性
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
颜色
black
溶解性
soluble (swell into hydrogel but does not dissolve in water)
环保替代产品分类
一般描述
We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product is used in energy conversion and storage, thus has been enhanced for energy efficiency. Click here for more information.
应用
Three-dimensionally cross-linked polypyrrole (3D cross-linked polypyrrole) is a conductive powder made by crosslinking polypyrrole with a dopant molecule - phytic acid. It can form intrinsically conductive hydrogels with a hierarchically porous microstructure. Its porosity promotes transport of electrons and facilitates the diffusion of ions and other small molecules. Its flexibility can also help accommodate the strain caused by volume change during electrochemical cycling. Together with the advantage of high surface area, and biocompatibility, this material provides the feasibility for fabricating flexible, lightweight, energy and bioelectronic devices. Three-dimensionally cross-linked polypyrrole can also been derived into porous carbon nanomaterials via post thermal treatment and activation. The resulted carbon matrix has maintained the hierarchical nanostructure of 3D cross-linked polypyrrole and has been demonstrated as an effective additive to improve energy storage and conversion performance of other electrochemically active materials.
储存分类代码
11 - Combustible Solids
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
法规信息
新产品
Designing Hierarchically Nanostructured Conductive Polymer Gels for Electrochemical Energy Storage and Conversion.
Shi Y,et al.
Chemistry of Materials, 28(8), 2466-2477 (2016)
Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes.
Shi Y,et al.
Journal of Material Chemistry A, 2, 6086?6091-6086?6091 (2014)
Graeme S A, et al.
Journal of Power Sources, 196, 1-12 (2011)
Borui Liu et al.
Nano letters, 13(7), 3414-3419 (2013-06-22)
Silicon is considered one of the most promising anode materials for high-performance Li-ion batteries due to its 4200 mAh/g theoretical specific capacity, relative abundance, low cost, and environmental benignity. However, silicon experiences a dramatic volume change (∼300%) during full charge/discharge
商品
Recent demand for electric and hybrid vehicles, coupled with a reduction in prices, has caused lithium-ion batteries (LIBs) to become an increasingly popular form of rechargeable battery technology.
Self-healing soft electronic materials offer potential cost savings and reduced electronic waste.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门