描述
Degree of substitution: >80% by TNBS method
NMR: Conforms to structure
形式
powder
颜色
white to pale yellow
储存温度
2-8°C
一般描述
Due to its biodegradablity and biocompatibility, gelatin is routinely used in hydrogels for biomedical applications such as drug delivery, tissue engineering, and 3D bioprinting. Gelatin-based hydrogels are synthesized by the crosslinking of functionalized gelatins. Depending on the identity of the functional groups, several different processes can be used to synthesize crosslinked gelatin hydrogels, including radical-based (either thermal or photochemical) and click chemistry methods. Alkyne-functionalized gelatin can be used in the synthesis of hydrogel using click chemistry with either azide or thiol substrates.
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
法规信息
监管及禁止进口产品
Thiol-yne ′click′/coupling chemistry and recent applications in polymer and materials synthesis and modification.
Polymer, 55, 5517-5549 (2014)
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
Biomaterials, 73, 254-271 (2015)
Scientific reports, 5, 15060-15060 (2015-10-10)
This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were
Advanced healthcare materials, 5(5), 541-547 (2016-01-26)
Injectable gelatin hydrogels formed with bioorthogonal click chemistry (ClickGel) are cell-responsive ECM mimics for in vitro and in vivo biomaterials applications. Gelatin polymers with pendant norbornene (GelN) or tetrazine (GelT) groups can quickly and spontaneously crosslink upon mixing, allowing for
Gelatin hydrogels via thiol-ene chemistry.
Monatshefte fur Chemie / Chemical Monthly, 147, 587-592 (2016)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门