产品名称
二氧化碲, ≥97.0%
InChI key
LAJZODKXOMJMPK-UHFFFAOYSA-N
InChI
1S/O2Te/c1-3-2
SMILES string
O=[Te]=O
assay
≥97.0%
form
powder
mp
733 °C (lit.)
density
5.67 g/mL at 25 °C (lit.)
Quality Level
正在寻找类似产品? 访问 产品对比指南
Application
TeO2 can be potentially used in medical imaging and industrial monitoring processes.
General description
Tellurium dioxide (TeO2) is a ceramic material that can be used as a semiconducting oxide. It has a wide band gap and high mobility as determined by density functional theory (DFT) calculations. In bulk quantity, it exists in two polymorphs which include tetragonal α-TeO2 and orthorhombic β-TeO2.
signalword
Danger
Hazard Classifications
Acute Tox. 4 Inhalation - Aquatic Chronic 2 - Lact. - Repr. 1B - Skin Sens. 1B
存储类别
6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves, type N95 (US)
Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy
Guo S, et al.
Nanoscale, 10(18), 8397-8403 (2018)
Gamma radiation-induced changes in the electrical and optical properties of tellurium dioxide thin films
Arshak K and Korostynska O
IEEE Sensors Journal, 3(6), 717-721 (2003)
G Bilir et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 83(1), 314-321 (2011-09-20)
TeO(2)-CdF(2)-WO(3) glasses with various compositions and Er(3+) concentrations were prepared by conventional melting method. Their optical properties were studied by measuring the absorption, luminescence spectra and the decay patterns at room temperature. From the optical absorption spectra the Judd-Ofelt parameters
Sankha Chattopadhyay et al.
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 68(10), 1967-1969 (2010-05-18)
A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very
Sankha Chattopadhyay et al.
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 67(10), 1748-1750 (2009-05-05)
A simple and inexpensive method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed. The beta(-) emitting (131)I radionuclide, produced by the decay of (131)Te through the (nat)Te(n
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持

