跳转至内容
Merck
CN

725358

Sigma-Aldrich

氧化铁(II,III),磁性纳米颗粒 溶液

10 nm avg. part. size, 5 mg/mL in H2O

别名:

磁性氧化铁纳米颗粒, 磁铁矿, 超顺磁氧化铁纳米颗粒

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
Fe3O4
CAS号:
分子量:
231.53
MDL编号:
UNSPSC代码:
12352302
PubChem化学物质编号:
NACRES:
NA.23

形式

dispersion
nanoparticles

质量水平

浓度

5 mg/mL in H2O

磁化

>45 emu/g, at 4500Oe

平均零件尺寸

10 nm

粒径

9-11 nm (TEM)

密度

1.00 g/mL at 25 °C

SMILES字符串

O=[Fe].O=[Fe]O[Fe]=O

InChI

1S/3Fe.4O

InChI key

SZVJSHCCFOBDDC-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

一般描述

浓度5mg/ml包括纳米晶体加配体的总重量。

应用



  • Optical resolution of ephedrine: A study explored the optical resolution of racemic ephedrine using various derivatives of tartaric acid, presenting a method that could refine the production of pharmaceutical-grade ephedrine hydrochloride (Bánhegyi et al., 2022).


  • Stereoselective forensic analysis: Supercritical fluid chromatography coupled with tandem mass spectrometry was used to perform a stereoselective analysis of ephedrine and its isomers in seized methamphetamine samples, offering insights into forensic applications of ephedrine hydrochloride (Segawa et al., 2021).


  • Chiral analysis of stimulants: A chiral high-performance liquid chromatography-tandem mass spectrometry method was applied to determine amphetamine-type stimulants, including ephedrine, in forensic samples, providing a tool for the precise separation and identification of chiral drugs (Schwelm et al., 2020).


储存分类代码

12 - Non Combustible Liquids

WGK

nwg

闪点(°F)

Not applicable

闪点(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Leyong Zeng et al.
Nanoscale, 5(5), 2107-2113 (2013-02-06)
Multifunctional Fe(3)O(4)-TiO(2) nanocomposites with Janus structure for magnetic resonance imaging (MRI) and potential photodynamic therapy (PDT) were synthesized, in which Fe(3)O(4) was used as a MRI contrast agent and TiO(2) as an inorganic photosensitizer for PDT. Their morphology, structure, and
Lu Zhang et al.
Nanoscale, 5(17), 7664-7684 (2013-07-24)
Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great promise in biomedical applications. In this review, we summarize the recent advances in the design and fabrication of core-shell and hetero-structured SPIONs and further outline some exciting developments and progresses of these
Aman Khurana et al.
Radiology, 269(1), 186-197 (2013-07-16)
To determine whether intravenous ferumoxytol can be used to effectively label mesenchymal stem cells (MSCs) in vivo and can be used for tracking of stem cell transplants. This study was approved by the institutional animal care and use committee. Sprague-Dawley
Yongxing Hu et al.
Journal of the American Chemical Society, 135(6), 2213-2221 (2013-01-26)
Controlled assembly of nanoparticles into asymmetric configurations is of great interest due to their novel properties and promising applications. In this Article, we report a generic strategy for the synthesis of dimer nanoclusters and asymmetric nanoassemblies by using magnetic colloidal
Jens Baumgartner et al.
Nature materials, 12(4), 310-314 (2013-02-05)
The formation of crystalline materials from solution is usually described by the nucleation and growth theory, where atoms or molecules are assumed to assemble directly from solution. For numerous systems, the formation of the thermodynamically stable crystalline phase is additionally

商品

Explore DNA-functionalized nanoparticles in sensors for precise target analyte detection. Learn about types, synthesis, functionalization, and design optimization, with insights into challenges and prospects.

Professor Mitsuhiro Ebara provides insights on several types of smart nanofiber mesh systems that have been explored for different drug delivery purposes.

Professor Hui Mao explores the use of superparamagnetic iron oxide nanoparticles (INOPs) that offer an alternate contrast-enhancing mechanism.

Prof. Yadong Yin discusses various synthesis methods of magnetite nanocrystals and their applications in different fields.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门