跳转至内容
Merck
CN

641723

Sigma-Aldrich

氧化铁铜

nanopowder, <100 nm particle size (BET), 98.5% trace metals basis

别名:

铁酸铜

登录查看公司和协议定价


About This Item

线性分子式:
CuFe2O4
CAS号:
分子量:
239.23
MDL编号:
UNSPSC代码:
12352302
PubChem化学物质编号:
NACRES:
NA.23

质量水平

检测方案

98.5% trace metals basis

形式

nanopowder

粒径

<100 nm (BET)

密度

5.4 g/mL at 25 °C (lit.)

SMILES字符串

[Cu++].[O-][Fe]=O.[O-][Fe]=O

InChI

1S/Cu.2Fe.4O/q+2;;;;;2*-1

InChI key

DXKGMXNZSJMWAF-UHFFFAOYSA-N

一般描述

Copper iron oxide, also called copper ferrite or cuprospinel, is a metal oxide composition related to magnetite, Fe3O4, where copper substitutes for some of the iron cations in the structure. Like the related magnetite, CuFe2O4 is superparamagnetic with the magnetization related to the size of the particles. Our copper iron oxide nanopowder has a particle size less than 100 nm and an XRF purity exceeding 98.5% on a metals basis. Copper iron oxide nanoparticles and nanocomposites have various applications in material science due to their unique electrical, optical, catalytic, and magnetic properties.Few key applications below: Catalyst: Copper iron oxide nanoparticles have been used as magnetically recyclable catalysts for the synthesis of pyrazole derivatives, which are important heterocyclic compounds with various biological activities. Energy storage: Copper oxide nanoparticles have been used in batteries and tools for solar energy conversion due to their electrical properties.

应用

  • Facile Detection of Blood Creatinine Using Binary Copper-Iron Oxide and rGO-Based Nanocomposite on 3D Printed Ag-Electrode under POC Settings.:研究用二元氧化铁铜和还原氧化石墨烯(rGO)纳米复合材料检测血液肌酐水平。研究表明将该复合材料用到3D打印银电极上,可提供高效准确的床边即时(point-of-care)诊断方法,对可持续能源材料和电池技术的先进负极材料有重要意义(Singh et al., 2021)。

法律信息

Engi-Mat Co.产品。

储存分类代码

11 - Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

个人防护装备

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Joseph A Adeyemi et al.
Ecotoxicology and environmental safety, 189, 109982-109982 (2019-12-13)
The increasing application of nanomaterials in various fields such as drug delivery, cosmetics, disease detection, cancer treatment, food preservation etc. has resulted in high levels of engineered nanoparticles in the environment, thus leading to higher possibility of direct or indirect
Jorge Rodríguez-Chueca et al.
International journal of environmental research and public health, 16(2) (2019-01-16)
Industrial activity is one of the most important sources of water pollution. Yearly, tons of non-biodegradable organic pollutants are discharged, at the least, to wastewater treatment plants. However, biological conventional treatments are unable to degrade them. This research assesses the
Rohit Chand et al.
Nanoscale, 10(17), 8217-8225 (2018-04-24)
Nanoscale MoS2 has attracted extensive attention for sensing due to its superior properties. This study outlines a microfluidic and electrochemical biosensing methodology for the multiplex detection of paratuberculosis-specific miRNAs. Herein, we report the synthesis of MoS2 nanosheets decorated with a

商品

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门