Skip to Content
Merck
CN
  • Dual role of superoxide dismutase 2 induced in activated microglia: oxidative stress tolerance and convergence of inflammatory responses.

Dual role of superoxide dismutase 2 induced in activated microglia: oxidative stress tolerance and convergence of inflammatory responses.

The Journal of biological chemistry (2015-08-02)
Yasuhiro Ishihara, Takuya Takemoto, Kouichi Itoh, Atsuhiko Ishida, Takeshi Yamazaki
ABSTRACT

Microglia are activated quickly in response to external pathogens or cell debris and clear these substances via the inflammatory response. However, excessive activation of microglia can be harmful to host cells due to the increased production of reactive oxygen species and proinflammatory cytokines. Superoxide dismutase 2 (SOD2) is reportedly induced under various inflammatory conditions in the central nervous system. We herein demonstrated that activated microglia strongly express SOD2 and examined the role of SOD2, focusing on regulation of the microglial activity and the susceptibility of microglia to oxidative stress. When rat primary microglia were treated with LPS, poly(I:C), peptidoglycan, or CpG oligodeoxynucleotide, respectively, the mRNA and protein levels of SOD2 largely increased. However, an increased expression of SOD2 was not detected in the primary neurons or astrocytes, indicating that SOD2 is specifically induced in microglia under inflammatory conditions. The activated microglia showed high tolerance to oxidative stress, whereas SOD2 knockdown conferred vulnerability to oxidative stress. Interestingly, the production of proinflammatory cytokines was increased in the activated microglia treated with SOD2 siRNA compared with that observed in the control siRNA-treated cells. Pretreatment with NADPH oxidase inhibitors, diphenylene iodonium and apocynin, decreased in not only reactive oxygen species generation but also the proinflammatory cytokine expression. Notably, SOD2 knockdown largely potentiated the nuclear factor κB activity in the activated microglia. Taken together, increased SOD2 conferred tolerance to oxidative stress in the microglia and decreased proinflammatory cytokine production by attenuating the nuclear factor κB activity. Therefore, SOD2 might regulate neuroinflammation by controlling the microglial activities.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Dihydroethidium, ≥95%
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Sod2
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
SAFC
HEPES
Sigma-Aldrich
Diphenyleneiodonium chloride, ≥98%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Acetovanillone, ≥98%, FG
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Dihydroethidium, BioReagent, suitable for fluorescence, ≥95% (HPCE)
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
HEPES
SAFC
Sodium chloride solution, 5 M