Skip to Content
Merck
CN
  • Endocytic trafficking of laminin is controlled by dystroglycan and is disrupted in cancers.

Endocytic trafficking of laminin is controlled by dystroglycan and is disrupted in cancers.

Journal of cell science (2014-09-14)
Dmitri Leonoudakis, Ge Huang, Armin Akhavan, Jimmie E Fata, Manisha Singh, Joe W Gray, John L Muschler
ABSTRACT

The dynamic interactions between cells and basement membranes serve as essential regulators of tissue architecture and function in metazoans, and perturbation of these interactions contributes to the progression of a wide range of human diseases, including cancers. Here, we reveal the pathway and mechanism for the endocytic trafficking of a prominent basement membrane protein, laminin-111 (referred to here as laminin), and their disruption in disease. Live-cell imaging of epithelial cells revealed pronounced internalization of laminin into endocytic vesicles. Laminin internalization was receptor mediated and dynamin dependent, and laminin proceeded to the lysosome through the late endosome. Manipulation of laminin receptor expression revealed that the dominant regulator of laminin internalization is dystroglycan, a laminin receptor that is functionally perturbed in muscular dystrophies and in many cancers. Correspondingly, laminin internalization was found to be deficient in aggressive cancer cells displaying non-functional dystroglycan, and restoration of dystroglycan function strongly enhanced the endocytosis of laminin in both breast cancer and glioblastoma cells. These results establish previously unrecognized mechanisms for the modulation of cell-basement-membrane communication in normal cells and identify a profound disruption of endocytic laminin trafficking in aggressive cancer subtypes.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, BioXtra, ≥97 .0%
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
Anti-LAMP-1 (CD107a) Antibody, clone 1D4B, clone 1D4B, from rat
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, for molecular biology, ≥97.0%
Sigma-Aldrich
Sodium dodecyl sulfate, Vetec, reagent grade, ≥98%
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium fluoride, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
Sodium fluoride, BioXtra, ≥99%