Skip to Content
Merck
CN
  • Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

Small (Weinheim an der Bergstrasse, Germany) (2014-04-17)
Filippo Bertoli, Gemma-Louise Davies, Marco P Monopoli, Micheal Moloney, Yurii K Gun'ko, Anna Salvati, Kenneth A Dawson
ABSTRACT

Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trizma® base, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
Trizma® base, ≥99.9% (titration), crystalline
Sigma-Aldrich
Tromethamine, meets USP testing specifications
Supelco
Trizma® base, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, ACS reagent, ≥99.8%
Trometamol, European Pharmacopoeia (EP) Reference Standard
USP
Tromethamine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Trizma® base, BioUltra, for molecular biology, ≥99.8% (T)
Supelco
Tromethamine, pharmaceutical secondary standard, certified reference material
Sigma-Aldrich
Trizma® base, Vetec, reagent grade, ≥99%
Sigma-Aldrich
Trizma® base, puriss. p.a., ≥99.7% (T)
Sigma-Aldrich
Trizma® base, anhydrous, free-flowing, Redi-Dri, ≥99.9%
Sigma-Aldrich
Trizma® base, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
Trizma® base, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)
Sigma-Aldrich
Trizma® base, ≥99.0% (T)
SAFC
Tromethamine
Sigma-Aldrich
Sigma 7-9®, ≥99% (titration), crystalline